General Chemistry Mr. MacGillivray Thermodynamics Calculations, Part II

Solve the following problems. Show formulas, units, and work for problems requiring calculations.

Suppose that 1.00 mol of $C_3H_8(g)$ reacts completely with $O_2(g)$ to produce $CO_2(g)$ and $H_2O_2(g)$.

- 1. Write the <u>balanced</u> chemical equation for this reaction.
- 2. Calculate the enthalpy of this reaction. Don't forget the correct units.
- 3. Is this reaction exothermic or endothermic? How do you know?
- 4. Is this enthalpy change favorable or unfavorable?
- 5. Calculate the ΔS° for the reaction in #1. Use the correct units.
- 6. Is this entropy change favorable or unfavorable? How do you know?
- 7. Calculate the ΔG° for this reaction at 298 K. You may use either of the two formulas to calculate ΔG° . Make sure that you keep track of the units -- ΔS° usually has "J" as part of its units, but ΔH° usually has "kJ"!
- 8. Is the reaction spontaneous or not? How do you know?
- 9. Consider the following reaction:

 $X + 2W \rightarrow Y$ $\Delta G^{\circ} = 40.9 \text{ kJ/mol}$

Here is what this expression really means: In this reaction, if 1 mol of X is reacted with 2 mol of W, then 1 mol of Y is produced and this requires 40.9 kJ of energy. Therefore, in order to produce **2.96 mol of Y**, how many kJ of energy must be used? Show work. Include units.

- 10. In all of the calculations above (excluding #9), you assumed that 1.00 mol of C_3H_8 reacted. Now, re-calculate the ΔG° from #7 assuming that
 - a. Only 0.393 mol of C_3H_8 reacts.
 - b. Only 0.393 g of C_3H_8 reacts.