General Chemistry Mr. MacGillivray Thermochemistry Practice Problems

Thermochemistry Practice Problems	
exothermic, and tell whether heat is	nxn°, classify the reaction as either endothermic or a released by the system or absorbed by the system. Your work on a separate sheet of paper.
1. l ₂ (s) → l ₂ (g) It = 267	7.25] - [0] = 67.25 K/map, endoth, host absorbed
2. 2Mg (s) + O ₂ (g) \rightarrow 2MgO (s)	-601, exoth, heat represent
and the second of the second o	(90.37×2) - (2)(33.84) = 113.06 K5/m.l
4. 2Fe (s) + 3CO ₂ (g) → Fe ₂ O ₃ ((s) + 3CO (g) $\left(-827.16\right) + (3)(-10.5) - \left(3\right)(-393.5)$
5. Hydrazine, N ₂ H ₄ , is used as a	a rocket fuel. It reacts with oxygen to form
nitrogen and water. N_2H_4 (I) +	$O_2(g) \rightarrow N_2(g) + 2H_2O(g)$ = $+26.64^{15}/m_0$
kJ/mol, find the ΔH _{rxm} ° b. Calculate the molar ma c. The answer to part (a) released when 1 mole rocket requires more the calculate how much en reacts. d. Calculate how much en rocket fuel is burned de focket fuel is burned de tremendous amount of heat we because there is a huge amount	for the above equation. -534.06KJ/mc for the above equation. -534.06KJ/mc ass of hydrazine in g/mol. $z_{8+4} = 32 \text{KJ/mc}$ of this problem reveals how much energy is of hydrazine reacts. Of course, even a small han one mole of fuel to be launched! Now hergy is released when 2,310 mol of hydrazine $230 \text{mol} \text{KJ/mol}$ nergy is released when 50.0 kg of hydrazine uring a rocket launch. $50.0 \text{kg} \text{f} \text{lkg} \text{kJ/mol}$ as a fuel for welding torches. It releases a then it burns (i.e., undergoes combustion in air) unt of energy stored in the C-C triple bond in
•	oduced when it burns is 3300°C! — C == C — H
 b. Calculate the ΔH_{rxn}° in c. Is the combustion of acyou know? d. Calculate how many kare burned. 	ation for the combustion of acetylene. kJ/mol. cetylene exothermic or endothermic? How did J of heat are released when 50.0 g of acetylene $C_2 + H_{20} = C_2 + 2 + 5C_2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$
	" I Mol