1. Which of these is a chemical property?
[A] Sodium is a soft, shiny metal.
[B] Water has a high specific heat.
[C] Ice melts at $0^{\circ} \mathrm{C}$.
[D] Helium is very nonreactive.
[E] Oxygen is a gas.
2. Which of the following involves no chemical change?
[A] lighting a match
[B] driving a car
[C] burning paper
[D] boiling water
[E] baking a cake
3. Which would be an example of a homogeneous mixture?
[A] soil (dust)
[B] sodium chloride
[C] oily water
[D] aluminum
[E] milk
4. Helium is an example of
[A] a heterogeneous mixture
[B] a homogeneous mixture
[C] a compound
[D] an element
5. A solution can be a heterogeneous or a homogeneous mixture.
[A] True
[B] False
6. The symbol for the element cobalt is
[A] Cb
[B] K
[C] Cu
[D] C
[E] Co
7. How many hydrogen atoms are indicated in the formula $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2}$?
[A] 20
[B] 8
[C] 24
[D] 12
[E] none of these
8. The fundamental "particle" of a chemical element according to Dalton's theory is the
[A] atom
[B] electron
[C] molecule
[D] compound
9. The first scientist to show that atoms emit tiny negative particles was
[A] James Chadwick
[B] J. J. Thomson
[C] Ernest Rutherford
[D] Lord Kelvin
[E] William Thomson
10. The scientist whose alpha-particle scattering experiment led him to conclude that the nucleus of an atom contains a dense center of positive charge is
[A] William Thomson
[B] J. J. Thomson
[C] Ernest Rutherford
[D] James Chadwick
[E] Lord Kelvin
11. Which atomic particle determines the chemical behavior of an atom?
[A] nucleus
[B] proton
[C] electron
[D] neutron
[E] none of these
12. An element's most stable ion forms an ionic compound with chlorine having the formula XCl_{2}. If the ion of element X has a mass of 89 and 36 electrons, what is the identity of the element, and how many neutrons does it have?
[A] Rb, 52 neutrons
[B] Se, 55 neutrons
[C] Kr, 55 neutrons
[D] Sr, 51 neutrons
[E] Kr, 53 neutrons
13. Atoms of the same element having the same atomic number but different mass numbers are called
[A] orbitals
[B] isomers
[C] neutrons
[D] nuclei
[E] isotopes
14. The mass number of an atom equals
[A] the atomic number of the element
[B] the number of protons plus the number of neutrons per atom
[C] the number of neutrons per atom
[D] the atomic mass of the element
[E] none of these
15. How many neutrons are contained in an iodine nucleus with a mass number of 131 ?
[A] 78
[B] 131
[C] 127
[D] 53
[E] 74
16. The number of protons in ${ }_{80}^{200} \mathrm{Hg}$ is
[A] 200
[B] 120
[C] dependent on ionic charge
[D] 80
[E] unknown
17. The name for $\mathrm{Hg}_{2}{ }^{2+}$ is
[A] mercury(I) ion
[B] mercury ion
[C] hydrogen ion
[D] hydrogen(II) ion
[E] mercury(II) ion
18. The symbol for the calcium ion is
[A] Ca^{+}
[B] C^{2+}
$[C] \mathrm{Ca}^{2+}$
[D] Cl^{2+}
[E] Ca
19. Titanium(IV) oxide has the formula
[A] $\mathrm{Ti}_{4} \mathrm{O}_{2}$
[B] $\mathrm{Ti}(\mathrm{IV}) \mathrm{O}$
[C] TiO_{2}
[D] $\mathrm{Ti}_{4} \mathrm{O}$
[E] TiO_{4}
20. The binary compound PCl_{3} is called
[A] triphosphorus chloride
[B] phosphorus chloride
[C] monophosphorus trichloride
[D] phosphorus trichloride
[E] none of these
21. Sodium chlorite has the formula
[A] NaClO_{4}
[B] NaCl
[C] NaClO_{3}
[D] NaClO
[E] NaClO_{2}
22. The formula for the compound formed from ammonium and sulfate ions is
[A] $\mathrm{NH}_{4}\left(\mathrm{SO}_{4}\right)_{2}$
[B] $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
[C] $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{SO}_{4}$
[D] $\mathrm{NH}_{4} \mathrm{SO}_{4}$
[E] none of these
23. Express 506100 in scientific notation.
[A] 5.1×10^{5}
[B] 5.061×10^{5}
[C] 51×10^{5}
[D] 5.06100×10^{5}
[E] 5×10^{5}
24. The number 0.00231 expressed in exponential notation is
[A] 2.31×10^{3}
[B] 231×10^{3}
[C] 2.31×10^{-2}
[D] 2.31×10^{-3}
[E] 2.31×10^{2}
25. The number of milligrams in 100 g is
[A] $10^{3} \mathrm{mg}$
[B] $10^{-6} \mathrm{mg}$
[C] $10^{5} \mathrm{mg}$
[D] $10^{-3} \mathrm{mg}$
[E] $10^{6} \mathrm{mg}$
26. The number of cubic centimeters $\left(\mathrm{cm}^{3}\right)$ in 43.0 mL is
[A] $4.30 \mathrm{~cm}^{3}$
[B] $43.0 \mathrm{~cm}^{3}$
[C] $0.0430 \mathrm{~cm}^{3}$
[D] none of these
27. How many significant figures are in the number 6.022×10^{32} ?
[A] 23
[B] 1
[C] 27
[D] 4
[E] 3
28. A student finds that the weight of an empty beaker is 12.024 g . She places a solid in the beaker to give a combined mass of 12.108 g . To how many significant figures is the mass of the solid known?
[A] 4
[B] 5
[C] 1
[D] 3
[E] 2
29. Convert 561097 mm to kilometers.
[A] 561.097 km
[B] 5610.97 km
[C] 5.61097 km
[D] $5.61097 \times 10^{11} \mathrm{~km}$
[E] 0.561097 km
30. Convert: $23^{\circ} \mathrm{C}=$ \qquad K.
31. An experiment requires 75.0 mL of ethyl alcohol. If the density of ethyl alcohol is 0.790 $\mathrm{g} / \mathrm{cm}^{3}$, what is the mass of 75.0 mL of ethyl alcohol?
32. What is the mass of one atom of copper in grams?
[A] 52.0 g
[B] 65.4 g
[C] $1.06 \times 10^{-22} \mathrm{~g}$
[D] 58.9 g
[E] 63.5 g
33. One atom of calcium weighs
[A] 20 g
[B] 20 amu
[C] $6.02 \times 10^{23} \mathrm{amu}$
[D] 40.08 g
[E] none of these
34. What is the molar mas of $\mathrm{K}_{2} \mathrm{SO}_{4}$?
[A] $135.16 \mathrm{~g} / \mathrm{mol}$
[B] $87.13 \mathrm{~g} / \mathrm{mol}$
[C] $174.26 \mathrm{~g} / \mathrm{mol}$
[D] $86 \mathrm{~g} / \mathrm{mol}$
[E] $174 \times 1023 \mathrm{~g} / \mathrm{mol}$
35. Calculate the percentage composition (by mass) of all the elements in $\mathrm{Cd}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$.
36. The mass percent of oxygen in CaO is
[A] 25.0%
[B] 50\%
[C] cannot be determined from the information given
[D] 28.5\%
[E] 72.4\%
37. Which of the following has the empirical formula CH_{2} ?
[A] $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
[B] $\mathrm{C}_{6} \mathrm{H}_{6}$
[C] $\mathrm{C}_{6} \mathrm{H}_{12}$
[D] $\mathrm{H}_{2} \mathrm{CO}_{3}$
[E] $\mathrm{C}_{2} \mathrm{H}_{6}$
38. Balance the equation
$\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
39. Balance the equation
$\mathrm{As}_{2} \mathrm{O}_{3}(s)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{AsO}_{3}\right)_{2}(s)+\mathrm{H}_{2} \mathrm{O}(l)$
40. Balance the equation
$\mathrm{Sb}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Sb}_{2} \mathrm{O}_{3}(\mathrm{~s})$
41. Balance the equation
$\mathrm{KClO}_{3}(s) \rightarrow \mathrm{KCl}(s)+\mathrm{O}_{2}(g)$
42. The reaction $\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$ is a(n) reaction.
[A] oxidation-reduction
[B] precipitation
[C] none of these
[D] acid-base
[E] single-replacement
43. Refer to the following equation:

$$
4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

How many molecules of water are produced for each mole of NO_{2} given off?
[A] 18
[B] 12.044×10^{23}
[C] 9.033×10^{23}
[D] 6.022×10^{23}
[E] none of these
44. Refer to the following unbalanced equation:

$$
\mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What mass of oxygen $\left(\mathrm{O}_{2}\right)$ is required to react completely with 25.0 g of $\mathrm{C}_{6} \mathrm{H}_{14}$?
[A] 88.2 g
[B] 16.0 g
[C] 9.28 g
[D] 608 g
[E] 32.0 g
45. How many molecules of carbon dioxide would be formed if 6.75 g of propane is burned in the following reaction?
$\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
[A] 5.54×10^{23} molecules
[B] 2.77×10^{23} molecules
[C] 1.39×10^{23} molecules
[D] 3.89×10^{23} molecules
[E] 20.3×10^{23} molecules
46. The amount of energy needed to heat 2.00 g of carbon from $50.0^{\circ} \mathrm{C}$ to $80.0^{\circ} \mathrm{C}$ is 42.6 J . The specific heat capacity of this sample of carbon is
[A] $0.710 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
[B] $0.355 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
[C] $2556 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
[D] $639 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
[E] $1.42 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
47. Which of the following is a valid unit for specific heat (or specific heat capacity)?
[A] cal
[B] g ${ }^{\circ} \mathrm{C} / \mathrm{cal}$
[C] cal/g
[D] cal/g ${ }^{\circ} \mathrm{C}$
[E] ${ }^{\circ} \mathrm{C}$
48. Heat is typically measured in
[A] ${ }^{\circ} \mathrm{F}$
$[\mathrm{B}]^{\circ} \mathrm{C}$
[C] grams
[D] joules
49. The form of EMR that has less energy per photon than microwaves is
[A] gamma rays
[B] microwaves
[C] infrared rays
[D] radio waves
[E] none of these
50. The shape of an s orbital is
[A] conical shaped
[B] dumbbell shaped
[C] donut shaped
[D] spherical
[E] none of these
51. A given set of p orbitals consists of \qquad orbital(s).
[A] 1
[B] 4
[C] 2
[D] 3
[E] 5
52. The maximum number of electrons allowed in each of the d orbitals is
[A] 4
[B] 32
[C] 8
[D] 2
[E] 18
53. The electron configuration for the carbon atom is
[A] [Ne] $2 s^{2} 2 p^{2}$
[B] $1 s^{2} 2 s^{2} 2 p^{2}$
[C] $1 s^{2} 2 p^{4}$
[D] [He] $2 s^{4}$
[E] none of these
54. The alkali metals have how many valence electrons?
[A] 1
[B] 7
[C] 3
[D] 2
[E] 8
55. What element has the electron configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$?
[A] Ba
[B] Sn
[C] Pb
[D] Po
[E] none of these
56. Which of the following atoms has the largest atomic radius?
[A] C
[B] P
[C] Mg
[D] Si
[E] Na
57. Which of the following has the highest ionization energy?
[A] C
[B] K
[C] Ca
[D] N
[E] O
58. Nonmetal elements typically have \qquad electronegativities.
[A] neutral
[B] high
[C] strong
[D] low
[E] none of these
59. An N--F bond is expected to be more polar than an O--F bond.
[A] True
[B] False
60. The most electronegative element is
[A] O
[B] He
[C] Cs
[D] At
[E] F
61. Which of these is not an ionic compound?
[A] $\mathrm{NH}_{4} \mathrm{I}$
[B] HCl
[C] MgCl_{2}
[D] NaSCN
[E] $\mathrm{K}_{2} \mathrm{CO}_{3}$
62. The number of polar covalent bonds in NH_{3} is
[A] 1
[B] 3
[C] 4
[D] 2
[E] none of these
63. Which element or ion listed below has the electron configuration $1 s^{2} 2 s^{2} 2 p^{6}$?
[A] Al^{3+}
[B] F^{-}
[C] Na^{+}
[D] Ne
[E] all of these
64. How many lone pairs of electrons are in the Lewis structure for ammonia, NH_{3} ?
[A] 1
[B] 0
[C] 2
[D] 4
[E] 3
65. Draw the Lewis electron structure for the HI molecule.
66. Draw the Lewis structure for CCl_{4}.
67. Which of the following has a triple bond?
[A] CH_{4}
[B] CO
[C] $\mathrm{NO}_{3}{ }^{-}$
[D] SO_{2}
[E] none of these

Consider the molecule $\mathrm{H}_{2} \mathrm{~S}$. Answer the following.
68. What is the molecular geometry around the central atom?
69. How many lone pairs of electrons are around the central atom?
70. How many liters of $\mathrm{HCl}(\mathrm{g})$ measured at STP can be produced from 4.00 g of Cl_{2} and excess H_{2} according to the following equation:
$\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g)$
71. The solid rocket boosters for the space shuttle employ a mixture of aluminum and ammonium perchlorate (molar mass $=117 \mathrm{~g} / \mathrm{mol}$) as fuel. The balanced equation is $3 \mathrm{Al}(\mathrm{s})+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
How many liters of gas measured at STP are produced from 235 g of $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ with excess aluminum?
[A] 135 L
[B] 44.8 L
[C] 404 L
[D] 15.9 L
[E] 220. L
[1] [D]
[2] [D]
[3] [E]
[4] [D]
[5] [B]
[6] [E]
[7] [D]
[8] [A]
[9] [B]
[10] [C]
[11] [C]
[12] [D]
[13] [E]
[14] [B]
[15] [A]
[16] [D]
[17] [A]

> [18] [C]
[19] [C]
[20] [D]
[21] [E]
[22] [B]
[23] [B]
[24] [D]
[25] [C]
[26] [B]
[27] [D]
[28] [E]
[29] [E]
[30] 296
[31] 59.3 g
[32] [C]
[33] [E]
[34] [C]
[35] 54.8\% Cd; 24.4\% As; 20.8\% O
[36] [D]
[37] [C]
[38] $2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$
$[39] \mathrm{As}_{2} \mathrm{O}_{3}(s)+3 \mathrm{Ca}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{AsO}_{3}\right)_{2}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$
$[40] 4 \mathrm{Sb}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Sb}_{2} \mathrm{O}_{3}(s)$
[41] $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$
[42] [B]
[43] [C]
[44] [A]
[45] [B]
[46] [A]
[47] [D]
[48] [D]
[49] [D]
[50] [D]
[51] [D]
[52] [D]
[53] [B]
[54] [A]
[55] [C]
[56] [E]
[57] [E]
[58] [B]
[59] [A]
[60] [E]
[61] [B]
[62] [B]
[63] [E]
[64] [A]
[65] $\mathrm{H}-\ddot{\mathrm{I}}$:

[67] [B]
[68] bent or V-shaped
[69] two lone pairs of electrons
[70] 2.53 L
[71] [A]

