| 1. | Which of these is a che | emical property? | | | | | |-----|---|---------------------|------------------|--|-------------------------|--| | | [A] Sodium is a soft, | shiny metal. [| B] Water has a | high specific l | neat. | | | | [C] Ice melts at 0°C. | [D] Heliur | n is very nonrea | ctive. [| E] Oxygen is a gas. | | | 2. | Which of the following | g involves no chem | nical change? | | | | | | [A] lighting a match | [B] drivir | ng a car | [C] burn | ing paper | | | | [D] boiling water | [E] bakin | g a cake | | | | | 3. | Which would be an ex | ample of a homoge | eneous mixture? | | | | | | [A] soil (dust) [B] | sodium chloride | [C] oily water | r [D] alum | inum [E] milk | | | 4. | Helium is an example | of | | | | | | | [A] a heterogeneous r | nixture | [B] a home | ogeneous mix | ture | | | | [C] a compound | | [D] an eler | ment | | | | 5. | A solution can be a her | erogeneous or a ho | omogeneous mix | ture. | | | | | [A] True | | [B] False | | | | | 6. | The symbol for the ele | ment cobalt is | | | | | | | [A] Cb [B] | K [C] | Cu [I | D] C | [E] Co | | | 7. | How many hydrogen a | toms are indicated | in the formula (| NH ₄) ₂ C ₈ H ₄ C | 9 ₂ ? | | | | [A] 20 [B] | 8 [C] | 24 [I | D] 12 | [E] none of these | | | 8. | The fundamental "part | icle" of a chemical | element accord | ing to Dalton's | s theory is the | | | | [A] atom | [B] electron | [C] molec | ule [I | O] compound | | | 9. | The first scientist to show that atoms emit tiny negative particles was | | | | | | | | [A] James Chadwick | [B] J. J. T | Thomson | [C] Erne | st Rutherford | | | | [D] Lord Kelvin | [E] Willia | am Thomson | | | | | 10. | The scientist whose all nucleus of an atom cor | - | | | clude that the | | | | [A] William Thomson | [B] J. J. T | Thomson | [C] Erne | st Rutherford | | | | [D] James Chadwick | [E] Lord | Kelvin | | | | | 11. | Which atomic par | rticle determines | the chemical behav | vior of an atom? | | | | |-----|---|---|----------------------|-----------------------|--|--|--| | | [A] nucleus | [B] proton | [C] electron | [D] neutron | [E] none of these | | | | 12. | XCl ₂ . If the ion o | f element X has | a mass of 89 and 36 | | having the formula
t is the identity of the | | | | | element, and how many neutrons does it have? | | | | | | | | | [A] Rb, 52 neutr | ons [B |] Se, 55 neutrons | [C] Kr | r, 55 neutrons | | | | | [D] Sr, 51 neutro | ons [E | [] Kr, 53 neutrons | | | | | | 13. | Atoms of the sam called | e element havin | g the same atomic n | number but diffe | rent mass numbers are | | | | | [A] orbitals | [B] isomers | [C] neutrons | [D] nuclei | [E] isotopes | | | | 14. | The mass number | of an atom equa | als | | | | | | | [A] the atomic n | umber of the ele | ment | | | | | | | [B] the number of | of protons plus th | ne number of neutro | ons per atom | | | | | | [C] the number of | of neutrons per a | tom | | | | | | | [D] the atomic m | nass of the eleme | ent [E] no | one of these | | | | | 15. | How many neutrons are contained in an iodine nucleus with a mass number of 131? | | | | | | | | | [A] 78 | [B] 131 | [C] 127 | [D] 53 | [E] 74 | | | | 16. | The number of pr | otons in ²⁰⁰ ₈₀ Hg is | S | | | | | | | [A] 200 [B] 1 | 120 [C] depe | endent on ionic char | ge [D] 80 | [E] unknown | | | | 17. | The name for Hg ₂ | 2^{2+} is | | | | | | | | [A] mercury(I) id | on [B |] mercury ion | [C] hy | drogen ion | | | | | [D] hydrogen(II) ion [E] mercury(II) ion | | | | | | | | 18. | The symbol for the | ne calcium ion is | | | | | | | | [A] Ca ⁺ | [B] C^{2+} | [C] Ca ²⁺ | [D] Cl ²⁺ | [E] Ca | | | | 19. | Titanium(IV) oxid | de has the formu | la | | | | | | | [A] Ti_4O_2 | [B] Ti(IV)O | [C] TiO ₂ | [D] Ti ₄ O | [E] TiO ₄ | | | | 20. | The binary compo | ound PCl ₃ is calle | ed | | | |-----|--|--------------------------------|-------------------------|------------------------------|---------------------------| | | [A] triphosphorus chloride | | [B] phosphorus chloride | | | | | [C] monophosph | norus trichloride | [D] ph | nosphorus trichloric | de | | | [E] none of thes | | | • | | | | | | | | | | 21. | Sodium chlorite h | nas the formula | | | | | | [A] NaClO ₄ | [B] NaCl | [C] NaClO ₃ | [D] NaClO | [E] NaClO ₂ | | | | | | | | | 22. | | | med from ammonit | | | | | [A] $NH_4(SO_4)_2$ | [B] | $ (NH_4)_2SO_4 $ | [C] (NH ₄ | $_{3}SO_{4}$ | | | [D] NH_4SO_4 | [E] | none of these | | | | | | | | | | | 23. | Express 506100 i | | | | | | | [A] 5.1×10^5 | [B] 5.061×10^5 | [C] 51×10^5 | [D] 5.06100×10^{-1} | 0^5 [E] 5×10^5 | | 24. | The number 0.00 | 231 expressed in | exponential notation | on is | | | | [A] 2.31×10^3 | - | $ 231 \times 10^3$ | [C] 2.31 × | × 10 ⁻² | | | | | | [C] 2.31 / | ^ 10 | | | [D] 2.31×10^{-3} | [E] | 2.31×10^2 | | | | 25. | The number of m | illigrams in 100 g | g is | | | | | | | [C] 10 ⁵ mg | [D] 10 ⁻³ mg | [E] 10 ⁶ mg | | | [11] 10 1118 | [2] 10 1118 | [e] iv ing | [5] 10 mg | [2] 1 , | | 26. | The number of cu | ibic centimeters (| (cm^3) in 43.0 mL is | | | | | [A] 4.30 cm^3 | [B] 43.0 c | m^3 [C] 0.0 | 0430 cm^3 [D | o] none of these | | | | | | 22 | | | 27. | How many signif | icant figures are | in the number 6.022 | 2×10^{32} ? | | | | [A] 23 | [B] 1 | [C] 27 | [D] 4 | [E] 3 | | 28. | A student finds that the weight of an empty healter is 12 024 a. She please a solid in the | | | | | | 20. | A student finds that the weight of an empty beaker is 12.024 g. She places a solid in the beaker to give a combined mass of 12.108 g. To how many significant figures is the mass of | | | | | | | the solid known? | | - | | | | | [A] 4 | [B] 5 | [C] 1 | [D] 3 | [E] 2 | | 29. | Convert 561097 mm to kilo | meters. | | | | |-----|---|-----------------------------------|--------------------|---------------------|--| | | [A] 561.097 km | [B] 5610.97 km | [C] 5. | 61097 km | | | | [D] $5.61097 \times 10^{11} \text{ km}$ | [E] 0.561097 km | | | | | 30. | Convert: 23°C = | K. | | | | | 31. | An experiment requires 75.0 mL of ethyl alcohol. If the density of ethyl alcohol is 0.790 g/cm ³ , what is the mass of 75.0 mL of ethyl alcohol? | | | | | | 32. | What is the mass of one atom | m of copper in grams? | | | | | | [A] 52.0 g [B] 65.4 g | [C] 1.06×10^{-22} g | [D] 58.9 g | [E] 63.5 g | | | 33. | One atom of calcium weigh | S | | | | | | [A] 20 g [B] 20 amu | [C] 6.02×10^{23} amu | [D] 40.08 g | [E] none of these | | | 34. | What is the molar mas of K | ₂ SO ₄ ? | | | | | | [A] 135.16 g/mol | [B] 87.13 g/mol | [C] 17 | 74.26 g/mol | | | | [D] 86 g/mol | [E] $174 \times 1023 \text{ g/m}$ | ol | | | | 35. | Calculate the percentage con | mposition (by mass) of a | all the elements i | n $Cd_3(AsO_4)_2$. | | | 36. | The mass percent of oxygen | in CaO is | | | | | | [A] 25.0% [B] 50% | [C] cannot be determ | nined from the in | formation given | | | | [D] 28.5% [E] 72.4% | | | | | | 37. | Which of the following has | the empirical formula C | H ₂ ? | | | | | [A] C_2H_4O [B] C_6H | [C] C_6H_{12} | [D] H_2CO_3 | [E] C_2H_6 | | | 38. | Balance the equation $C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$ | | | | | | 39. | Balance the equation | | | | | $\operatorname{As_2O_3}(s) + \operatorname{Ca}(\operatorname{OH})_2(aq) \to \operatorname{Ca_3}(\operatorname{AsO_3})_2(s) + \operatorname{H_2O}(l)$ 40. Balance the equation $Sb(s) + O_2(g) \rightarrow Sb_2O_3(s)$ 41. Balance the equation $KClO_3(s) \rightarrow KCl(s) + O_2(g)$ 42. The reaction $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ is a(n)reaction. [A] oxidation-reduction [B] precipitation [C] none of these [D] acid-base [E] single-replacement 43. Refer to the following equation: $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$ How many molecules of water are produced for each mole of NO₂ given off? [B] 12.044×10^{23} [C] 9.033×10^{23} [A] 18 [D] 6.022×10^{23} [E] none of these 44. Refer to the following unbalanced equation: $C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$ What mass of oxygen (O₂) is required to react completely with 25.0 g of C₆H₁₄? [B] 16.0 g [A] 88.2 g [C] 9.28 g [D] 608 g [E] 32.0 g 45. How many molecules of carbon dioxide would be formed if 6.75 g of propane is burned in the following reaction? $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ [A] 5.54×10^{23} molecules [B] 2.77×10^{23} molecules [C] 1.39×10^{23} molecules [D] 3.89×10^{23} molecules [E] 20.3×10^{23} molecules 46. The amount of energy needed to heat 2.00 g of carbon from 50.0°C to 80.0°C is 42.6 J. The specific heat capacity of this sample of carbon is [A] 0.710 J/g °C [B] 0.355 J/g °C [C] 2556 J/g °C [D] 639 J/g °C [E] 1.42 J/g °C 47. Which of the following is a valid unit for specific heat (or specific heat capacity)? [A] cal [B] g °C/cal [C] cal/g [D] cal/g °C [E] °C | 48. | Heat is typically n | neasured in | [A] °F | [B] °C | [C] grams | [D] joules | | |-----|--|--|----------------------------|-----------------|------------------|---------------|--| | 49. | The form of EMR that has less energy per photon than microwaves is | | | | | | | | | [A] gamma rays | | [B] microwaves | s [| C] infrared rays | 3 | | | | [D] radio waves | | [E] none of the | se | | | | | 50. | The shape of an s | orbital is | | | | | | | | [A] conical shaped | | [B] dumbbell sh | naped [| C] donut shaped | d | | | | [D] spherical | | [E] none of the | se | | | | | 51. | A given set of p or | A given set of <i>p</i> orbitals consists of orbital(s). | | | | | | | | [A] 1 | [B] 4 | [C] 2 | [D] 3 | [E] | 5 | | | 52. | The maximum number of electrons allowed in each of the d orbitals is | | | | | | | | | [A] 4 | [B] 32 | [C] 8 | [D] 2 | [E] | 18 | | | 53. | The electron configuration for the carbon atom is | | | | | | | | | [A] [Ne] $2s^22p^2$ | [B] $1s^2 2s^2$ | $(22p^2 ext{ [C] } 1s^2)$ | $2p^4$ [D] [He] | $2s^4$ [E] nor | ne of these | | | 54. | The alkali metals | have how ma | ny valence elect | rons? | | | | | | [A] 1 | [B] 7 | [C] 3 | [D] 2 | [E] | 8 | | | 55. | What element has the electron configuration $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^2$? | | | | | | | | | [A] Ba | [B] Sn | [C] Pb | [D] Po | [E] | none of these | | | 56. | Which of the following atoms has the largest atomic radius? | | | | | | | | | [A] C | [B] P | [C] Mg | [D] Si | [E] | Na | | | 57. | Which of the following has the highest ionization energy? | | | | | | | | | [A] C | [B] K | [C] Ca | [D] N | [E] | O | | | 58. | Nonmetal elements typically have electronegativities. | | | | | | | | | [A] neutral | [B] high | [C] strong | g [D] lov | w [E] | none of these | | | 59. | An NF bond is expected to be more polar than an OF bond. | | | | | | |-----|--|---------------------------------|----------------------------------|---------------------------------|---------------------|--| | | [A] True [B] False | | | | | | | 60 | The most electron | agative element is | | | | | | 00. | [A] O | [B] He | [C] Cs | [D] At | [E] F | | | | [H] O | [B] He | [0] 03 | [D] At | [L] I | | | 61. | Which of these is | not an ionic comp | ound? | | | | | | [A] NH ₄ I | [B] HCl | [C] MgCl ₂ | [D] NaSCN | [E] K_2CO_3 | | | 62. | The number of po | lar covalent bonds | s in NH ₃ is | | | | | | [A] 1 | [B] 3 | [C] 4 | [D] 2 | [E] none of these | | | | | | | | | | | 63. | Which element or | ion listed below h | as the electron cor | nfiguration $1s^22s^22$ | p^{6} ? | | | | [A] Al^{3+} | [B] F ⁻ | [C] Na ⁺ | [D] Ne | [E] all of these | | | 64. | How many lone p | airs of electrons ar | re in the Lewis stru | acture for ammonia | , NH ₃ ? | | | | [A] 1 | [B] 0 | [C] 2 | [D] 4 | [E] 3 | | | 65. | Draw the Lewis e | lectron structure fo | or the HI molecule | | | | | 66. | Draw the Lewis s | tructure for CCl ₄ . | | | | | | 67. | Which of the follo | owing has a triple l | oond? | | | | | | [A] CH ₄ | [B] CO | [C] NO ₃ ⁻ | [D] SO ₂ | [E] none of these | | | Con | sider the molecule | H ₂ S. Answer the | following. | | | | | 68. | . What is the molecular geometry around the central atom? | | | | | | | 69. | How many lone pairs of electrons are around the central atom? | | | | | | | 70. | How many liters of $HCl(g)$ measured at STP can be produced from 4.00 g of Cl_2 and excess H_2 according to the following equation: $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ | | | g of Cl ₂ and excess | | | 71. The solid rocket boosters for the space shuttle employ a mixture of aluminum and ammonium perchlorate (molar mass = 117 g/mol) as fuel. The balanced equation is $3\text{Al}(s) + 3\text{NH}_4\text{ClO}_4(s) \rightarrow \text{Al}_2\text{O}_3(s) + \text{AlCl}_3(s) + 3\text{NO}(g) + 6\text{H}_2\text{O}(g)$ How many liters of gas measured at STP are produced from 235 g of NH₄ClO₄ with excess aluminum? [A] 135 L [B] 44.8 L [C] 404 L [D] 15.9 L [E] 220. L | [1] [D] | |---------| |---------| - [3] [E] - [4] [D] - [5] <u>[B]</u> - [6] <u>[E]</u> - [7] [D] - [8] [A] - [9] <u>[B]</u> - [10] [C] - [11] [C] - [12] [D] - [13] [E] - [14] [B] - [15] [A] - [16] [D] - [17] [A] | [18] [| <u>[C]</u> | |--------|------------| | [19] [| <u>[C]</u> | | [20] [| <u>[D]</u> | | [21] [| <u>[E]</u> | | [22] [| <u>[B]</u> | | [23] [| <u>[B]</u> | | [24] [| <u>[D]</u> | | [25] [| <u>[C]</u> | | [26] [| <u>[B]</u> | | [27] [| <u>[D]</u> | | [28] [| <u>[E]</u> | | [29] [| <u>[E]</u> | | [30] 2 | 296 | | [31] 5 | 59.3 g | | [32] [| <u>[C]</u> | | [33] [| <u>[E]</u> | | [34] [| [C] | [38] $$2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$$ [39] $$\operatorname{As_2O_3}(s) + 3\operatorname{Ca}(\operatorname{OH})_2(aq) \rightarrow \operatorname{Ca_3}(\operatorname{AsO_3})_2(s) + 3\operatorname{H_2O}(l)$$ [40] $$4Sb(s) + 3O_2(g) \rightarrow 2Sb_2O_3(s)$$ [41] $$2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$$ - [52] [D] - [53] [B] - [54] [A] - [55] [C] - [56] [E] - [57] [E] - [58] [B] - [59] [A] - [60] [E] - [61] [B] - [62] [B] - [63] [E] - [64] [A] - [65] H :: - :CI: :CI- C -CI: [66] :CI: | [67] | [B] | |------|-----------------------------| | [68] | bent or V-shaped | | [69] | two lone pairs of electrons | | [70] | 2.53 L | | [71] | [A] |