General Chemistry Mr. MacGillivray Quiz #35: Chemical Equilibrium and K_{eq}

1. Which phases of matter **are** represented in the equilibrium constant expression for a chemical reaction? (circle the correct answer or answers)

solid	liquid		gas	(aq)
The following reaction shows the decomposition of $CaCO_3$ (s) at high temperatures.				
MgCO ₃ (s	\$) ⇔	MgO (s)	+	CO ₂ (g)
2. Write the equilibrium constant expression for the reaction above.				
3. Write the equilibrium constant expression for the reaction shown below.				
2NH ₃ (g)	\Leftrightarrow	N ₂ (g)	+	3H ₂ (g)
4. Calculate the equilibrium constant for the reaction above, given the following data:				
following data: [NH ₃] = 0.34 M	$[N_2] = 4.$	9 x 10 ⁻⁴ M	[H ₂]=	= 2.1 x 10 ⁻³ M

- 5. The K_{eq} for the reaction shown below is 10.0. Is the reaction at equilibrium when [A] = 3.00 M and [B] = 30.0 M? Why or why not? Show K_{eq} expression and calculations to support your answer.
- $\mathsf{2A}\left(\mathsf{g}\right) \quad \Leftrightarrow \quad \mathsf{B}\left(\mathsf{g}\right)$