1) Given the reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

At STP, what is the number of liters of CO_{2} produced when 5.0 liters of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$ burns completely?
(A) 1.0 L
(C) 3.0 L
(B) 5.0 L
(D) 15 L
2) Given the reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What is the total number of liters of $\mathrm{O}_{2}(\mathrm{~g})$ at STP needed to produce 6.0×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$?
(A) 11.2 L
(C) 33.6 L
(B) 22.4 L
(D) 44.8 L
3) Given the reaction:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volume of $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})$ will completely react to produce exactly 36 liters of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
(A) 27 L
(C) 36 L
(B) 2.0 L
(D) 4.0 L
4) Given the balanced equation:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of liters of $\mathrm{CO}_{2}(\mathrm{~g})$ produced when 20.0 liters of $\mathrm{O}_{2}(\mathrm{~g})$ are completely consumed?
(A) 12.0 L
(C) 3.00 L
(B) 22.4 L
(D) 5.00 L
5) Given the balanced equation:

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?
(A) 11.2 L
(C) 33.6 L
(B) 22.4 L
(D) 44.8 L
6) Given the reaction:

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many liters of $\mathrm{O}_{2}(\mathrm{~g})$ are needed to produce exactly 200 liters of $\mathrm{CO}_{2}(\mathrm{~g})$?
(A) 100 L
(C) 300 L
(B) 200 L
(D) 400 L
\qquad 7) Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

At STP, what is the total volume of $\mathrm{CO}_{2}(\mathrm{~g})$ formed when 6.0 liters (L) of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ are completely oxidized?
(A) 24 L
(C) 6.0 L
(B) 12 L
(D) 4.0 L
8) Given the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

How many liters of ammonia, measured at STP, are produced when 28.0 grams of nitrogen is completely consumed?
(A) 5.60
(C) 22.4
(B) 11.2
(D) 44.8
9) Given the reaction:

$$
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}
$$

How many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to produce exactly 11.2 liters of H_{2}, measured at STP?
(A) 24.5
(C) 98.0
(B) 49.0
(D) 196
10) Magnesium was reacted with an excess of dilute hydrochloric acid and the hydrogen gas produced collected in a eudiometer. The volume of hydrogen in the eudiometer was corrected to conditions of STP. If 94.1 milliliters of hydrogen was produced, how much magnesium reacted in this experiment?
(A) 0.01 g
(C) 0.05 g
(B) 0.10 g
(D) 0.50 g

