ANSWERS EXPLAINED
 PART ONE

1. I

$$
\begin{aligned}
T(\text { iu } \mathrm{K}) & =t\left(\text { in }{ }^{\circ} \mathrm{C}\right)+273 \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
\mathrm{~K} & =\left(-1.3^{\circ} \mathrm{C}\right)+273 \\
\mathrm{~K} & =260
\end{aligned}
$$

The comnection between the K and C scales may be seen in this diagram of a thermometer. Notice that, while the two scales place 0 at different peints, both scales use the same size steps, or intervals, between temperatures.

2. 4 Only compounds can be decomposed: either into simpler compounds or into elements Elements cannot be decomposed into any simpler material by chemical means. Copper is the only element listed.
Mercury (II) oxide can be decomposed into mercury and oxygen.
Potassium chlorate can be decomposed into potassium chloride and onygen. Water can be decomposed into hydrogen and oxygen.
Copper cannot be decomposed.
3. 2 If the pressure of a gas is kept constant, then its volume changes with absolute temperature according to Charles' Law:

$$
\begin{aligned}
\frac{V_{1}}{T_{1}} & =\frac{V_{2}}{T_{2}} \\
\frac{30 \mathrm{ml}}{273 \mathrm{~K}} & =\frac{V_{2}}{364 \mathrm{~K}} \\
(273)\left(V_{2}\right) & =(30 \mathrm{ml})(364)
\end{aligned}
$$

$$
\begin{aligned}
& V_{z}=\frac{(30 \mathrm{ml})(364)}{(273)}=\frac{(30 \mathrm{ml})(91)(4)}{(91)(3)}=\frac{(30 \mathrm{ml})(4)}{(3)} \\
& V_{2}=(30 \mathrm{ml})(1.333 \ldots)=40 \mathrm{ml}
\end{aligned}
$$

This answer is consistent also with the fact that as temperature increases the volume of a gas also increases. Choices (3) and (4) are inconsistent with this fact.
4. 1 To sublime means to change from a solid to a gaseous state directly, without first melting into a liquid.

$$
\begin{aligned}
\text { solid state } & \rightarrow \text { gas state (sublimation) } \\
(\mathrm{s}) & \rightarrow(\mathrm{g})
\end{aligned}
$$

Of the choices given, only CO_{2} is given as being solid; the others are therefore eliminated. Indeed, $\mathrm{CO}_{2}(\mathrm{~s})$ does sublime, as anyone who has seen the "dry ice" used by ice cream vendors can attest. It evaporates without melting.
$\mathrm{CO}_{2}(\mathrm{~g})$ cloud
observed forming
by sublimation

5. 2 A beta particle is actually an electron that emerges at very high speeds from the radioactive decay of atoms. The symbol β^{-}("beta") is used for such an electron. Since it is an electron, it has a negative electric charge.

Reference Table H can be used to analyze this question.

Particle	Symbol	Notation Showing Mass and Charge	Charge
alpha	α	${ }_{2}^{4} \mathrm{He}$	+2
beta	β^{-}	${ }_{-1} \mathrm{e}$	-1
proton	p	H	+1
neutron	n	${ }_{8}^{1}$	0

6. 3 When an electron is removed from an atom. that atom becomes an ion of +1 charge. The energy required to remove that clectron is therefore called the iomization energy. Values for ionization energies (in $\mathrm{kcal} / \mathrm{mol}$) are given in Reference Table I.

Electron removed
br iouzation
emerey

Wrong Choices Explained:

(1) Kinetic energy derives from the motion of atoms and molacules in a substance and is reflected in the temperature of the substance.
(2) Potential energy measures the heat or work that can be liberated in a chemical reaction or in some change of position in an electric os gravitational field
(4) Electron affinity (sometimes called "clectronegativity") relates to how well an atom can take in an additional electron to become a - 1 ion. This concept is the reverse of ionization.

Extra electron added according to electron affinity value of atom

7. I The atomic number tells how many protons are in the atom's nucleus. Therefore, an atontic number of 13 implies the presence of 13 protons. Since in a neutral atom the number of electrons must equal the number of protons, 13 electrons must also be present.

8. 4 The ground states for the four atoms are diagramed below. Notice that only Na has one partially occupied orbital. Si has two partially filled orbitals. while Ne and Ca have their orbitals completely filled.

9. 3 The chart below shows the sublevels possible in each principal energy level.

Principal Energy Level		Sublevels	
	s	Number of Sublevels	
2		s, p	1
3	s, p, d	2	
4	s, p, d, f	3	
		4	

The third level has 3 possible sublevels within it.
This can also be seen if the sublevels are written out in ascending order of energy-a sequence chemistry students should memorize!

$$
\begin{aligned}
& \begin{array}{llllllllll}
I s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{6} & 4 s^{2} & 3 d^{10} & 4 p^{6} & 5 s^{2} & 4 d^{10}
\end{array} \\
& 3 \text { sublevels (} s, p \text {, and } d \text {) } \\
& \text { in energy } \\
& \text { level } 3
\end{aligned}
$$

10. 3 Isotopes of an element have the same atomic number but different mass numbers.

Wrong Choices Explained:

(1) ${ }_{54}^{158} X$ and ${ }_{66}^{156} X$ are identical, not isotopes.
(2) ${ }_{158}^{64} X$ and ${ }_{84}^{158} X$ have different atomic numbers, so they cant be isotopes of the same element. (Incidentally, $154 . X$ cannot exist. Can you see why?)
(4) ${ }^{154} X$ and ${ }_{65}^{158} X$ have different atomic numbers, so they are different elements. They have the same mass number coincidentally, but this does not qualify them to he isotopes.
11. 1 The valence electrons are those in the outcrmost (highest) principal energy level.

12. 2 The compound's name, nitrogen(IV) oxide, teils you that nitrogen is in the +4 oxidation state. Oxygen always has $\mathbf{a}-9$ oxidation state in oxides. By the criss-cross method you obtain the compound's formula:

a. Assign oxidation numbers	+4	-2
	N	O
b. Criss-cross oxidation numbers	+4	-2
	$\mathrm{~N}_{2}$	
c. Hossible formula	$\mathrm{N}_{2} \mathrm{O}_{4}$	
d. Heduce to smallest whole number subscripts	NO_{2}	

Wrong Choices Explained:

Chorice	Charge on Nitrogen Atom	Name
(1)	+2	NO, nitrogen(U) oxide
(3)	+6	NO_{3}, nitrogen(VI) oxide
(4)	+8	NO_{4}, nitrogen(VIII) oxide

13. 4n empirical formula has subscripts that cannot be reduced to any smaller whole numbers. $\mathrm{K}_{2} \mathrm{O}$ meets this criterion. The other choices can be reduced.

Wrong Choices Explained:

Choice	Molecular Formula	Empirical Formula
(1)	$\mathrm{C}_{2} \mathrm{H}_{2}$	CH
(2)	$\mathrm{C}_{2} \mathrm{H}_{4}$	CH_{2}
(3)	$\mathrm{Al}_{2} \mathrm{Cl}_{6}$	AlCl_{3}

14. 3 This equation is best balanced by trial and error. Begin with the fact that, since there are two C atoms on the left, two CO_{2} molecules should be produced. Next, balance the H atoms by placing a " 2 " in front of $\mathrm{H}_{2} \mathrm{O}$. The result:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

15. 4 Molecules are polar if they meet two conditions:
a. the bonds within the molecule are polar, and
b. the molecule has an asymmetric shape.

These conditions create an asymmetric charge distribution. NH_{3}, or ammonia. meets these criteria because
a. the $\mathrm{N}-\mathrm{H}$ bond is polar, since N is more electronegative than H, and
b. the molecule is not symmetric, being a triangular-based pyramid with the N atom above the three H atoms.

Wrong Choices Explained
(1) Being a gas is not directly relevant to whether a molecule is polar or not. Many gases are; many are not
(2) $\mathrm{N}-\mathrm{H}$ bonds are polar.
(3) N is a nonmetal; H , a metalloid. In any case, identifying the type of element is irrelevant to identifying polar molecules.
16. I The degree of ionic character in a bond can be determined from the difference between the electronegativity values of the elements in the bond. These are given in Reference Table I. The greater the difference in these electronegativity values, the more ionic is the bond formed.

Choice	Element	Electronegativities		Difference	Fonic Character
(1)	oxygen	$0=3.5$	$\mathrm{S}=2.5$	1.0	greatest
(2)	chlorine	$\mathrm{Cl}=3.0$	$\mathrm{S}=2.5$	0.5	
(3)	bromine	$\mathrm{Br}^{2}=2.8$	$\mathrm{S}=2.5$	0.3	least
(4)	phosphorus	$\mathrm{P}=2.1$	$S=2.5$	0.4	

17. 3 Helium atoms have full outer electron shells. They do not normally give or receive electrons from other atoms or from each other. Therefore, helium is inert and remains as single (monoatomic) atoms in the gas state. Since these atoms are not attracted to one another, there exists no bond to make them coalesce to form a liquid or solid.

single He(g) atoms with no mutual attraction forces

However, the electrons around each atom do revolve, thereby creating weak, temporary charge fluctuations which can serve as the "glue" to form a liguid state under low temperatures. These relatively weak attractive forces are known as van der Waals forces.

Hefl)-atoms held together by weak, partial, fluctuating van der Waals charges. $(+)$ ind $(-)$

Wrong Choices Explained:
(1) Hydrogen loonding results from highly polar thonds that contain H as one atom. Here we are dealing with the pure element helium, not hydrogen.
(2) Covalent bonds are formed by the sharing of electrons between two atoms, as in the diatumic molecules $\mathrm{H}_{2}, \mathrm{Cl}_{2}$, and O_{2}. As discussed ahove. helium atoms are inert and monoatomic, and do not do this.
(4) Ionic bonding begins when electrons are transferred to make (+1 and (-) ions. This does not occur with helium
18. 2 Hydrogen bonds are formed between molecules that contain some hydrogen. If the bond between the hydrogen atom and its partner is very polar then the attractive forces between neighboring molecules will be strong.
$\delta(+) \quad \delta(-)$ Partial charges H—X
Polarized bond
within molecule

Hydrogen bonds between molecules

The HY molecule above will have the greatest polarization within itself and betueen its neighbors when clement X has an electronegativity high enough to pull electrons closer to itself than to H .

$$
\delta(+) \mathrm{H}: \mathbf{X} \boldsymbol{\delta}(-)
$$

Atoms with high electronegativities also have small radii. Note, for example that Auorine (F) has the highest electronegativity if. 0 , from Reference Table I and a small radius (0.7 A A, from the Pcriodic 「able). In lact, HF does bave extremely strong hydrogen bunds betwerin molecules.
19. 3 Elements within the same farnily ior group) 'rehave in similar wavs because they have the same electron configuration in their outermost energy levels. Mg and Ca are both metals in Croup IIA on the Periodic Table. Notice that they have similar outer s^{2} orbitals.
The other pairs of elements are not from the same groups and so will not be similar in chemical properties
20. 2

21. 3 The halogen family is Croup VIIA on the Periodic Table.
22. I Reference Table I gives you the electronegativities for these elements:

$$
\begin{array}{lll}
\mathrm{C} & 2.5 & \text { (lowest) } \\
\mathrm{F} & 4.0 & \\
\mathrm{~N} & 3.0 & \\
\mathrm{O} & 3.5 &
\end{array}
$$

23. 2 Nonmetals are poor conducturs of electricity because they do not easily selease their outer electrons as metals do. In other words, nonmetals require a lot of energy to release even a single electron-they have high ionization energies.

This is confirmed by Reference Table I. Nole that the nonmetals have ionization energies from 200 to $400 \mathrm{kcal} / \mathrm{mol}$. Compare this to the metals, which have ionization energies primarily in the 90 to $200 \mathrm{kcal} / \mathrm{mol}$ range.
24. 4 The Periodic Table gives electron structures. Looking down each group. you can detert the similarity in outer electrons among group members.

Choice	Group	Typical Outer Electron Pattern	Total Outermost Electrons
(2)	IA	s^{1}	1
(3)	VIA	s^{2}	$s^{2} p^{4}$
(4)	IVA	$s^{2} y^{2}$	2
			6

25. 4 To say that an elemett has a crystaline structure in to imply that it's a sobid. Under normal conditions, such as STP, iodine is a solid, bromine? is a liquid, and fluorine and chforine are gases.
26. 2
a. $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Fe mass: 2×56 (at. wt.) $=112 \mathrm{amu}$ O mass: $\underbrace{3 \times 16}_{\text {forma mass }}=-48 \mathrm{amu}$
b.

$$
\begin{aligned}
\text { W oxygen, by mass } & =\frac{\text { oxygen mass }}{\text { formula mass }} \times 100 \\
\text { W oxygen } & =\frac{48 \text { amn }}{160 \text { amu }} \times 100 \\
& =\frac{(3)!16)}{(10)(16)} \times 100 \\
& =\frac{3}{10} \times 100=30 \%
\end{aligned}
$$

2-1. 4 Obtain the tormula mass of LiF.

$$
\begin{aligned}
\mathrm{Li} & =7 \mathrm{amu} \\
\mathrm{~F} & \approx 19 \mathrm{amu} \\
\mathrm{LiF} & =26 \mathrm{amtt}
\end{aligned}
$$

Therefore, 1 mole of LiF will have a mass of 26 grams.
Now solve for the number of moles actually given.

$$
\text { number of moles }=\frac{\text { mass given }}{\text { mass of } \mathrm{J} \text { mole }}=\frac{39 \mathrm{~g}}{26 \mathrm{~g} / \mathrm{mol}}=1.5 \text { moles } \mathrm{LiF}
$$

28. 2
a. Calculate the number af mules in the solution taken before dilution. 12 -molar solution $=12$ moles of solute/each liter of solution
number of noles taken before dilution $=0.50$ liter \times
$\frac{12 \text { moles solute }}{1 \text { liter }}=6$ moles
b. Calculate new molarity after dilution.

$$
\text { molarity }=\frac{\text { moles of solute }}{\text { liters of solution made }}=\frac{6 \text { moles }}{1 \text { liter }}=6 \mathrm{molar}
$$

29. 4 This is a "volume-volume" gas problem. One result of Avogadro's Law is that the volumes of gases in a gas reaction (at constant pressure) are in the same ratio as the coefficients in the balanced equation.
a. Balanced equation: $4 \mathrm{NH}_{3}(\mathrm{~g})+50_{2 n}(g) \rightarrow 4 \mathrm{NO}(g)-6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g}}(\mathrm{g})$
b. Moie ratios:
c. Gas volume ratios: $4 \quad 5 \quad 5 \quad 4 \quad 6 \quad 6 \quad \leftarrow$ Identical
d. Gas volumes given in problem:
e. Set pration:
f. Cross-multiply:
x
$\frac{5}{x}=4$

$$
\begin{aligned}
& 40 . \text { liters } \\
& 4(X)=200 \text { liters } \\
& X=50 . \text { liters of } \mathrm{O}_{2}(\mathrm{~g}) \text { recuired }
\end{aligned}
$$

30. I Avogadro's Law states that 1 mole of any gas at STP will occupy 22.4 liters. This is the basis for our solution.
a. Calculate the moles of He in the sample.

$$
\text { atomic weight of } \mathrm{He}=4 \mathrm{amu}
$$

so 1 mole of $\mathrm{He}=4$ grams
nurnber of moles $=\frac{\text { mass given }}{\text { mass of } 1 \mathrm{~mole}}=\frac{2.00 \mathrm{~g}}{4.00 \mathrm{~g} / \mathrm{mol}}=0.500$ mole He
b. Use Avogadro's Law.
volume of gas $=$ number of moles (at STP) $\times 23.4$ liters/mol volume $=0.500$ mole $\mathrm{He} \times 22.4$ liters $/$ mole
volume $=11.2$ liters
31. I A catalyst speeds up a reaction's rate by making it easier for the reactants to come together. The energy needed to start the reactants is called the activation energy, which the catalyst changes. Without the catalyst the reaction would proceed at a slower rate. However, the potential energy of the reactants and products, and the net beat of the reaction, are the same with or without the catalyst.
The standard diagram of energy changes during a chemical reaction shows these concepts.

Reaction Coordinate (e.g., time)
32. 4 Reference Table G shows J mole of each of these materials burming (oxidizing) to produce $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(t)$. The ΔH value tells how many kilocalorit's are released in this process. The negative sign (-) in front of the ΔH values means these reactions are all exothermic fthey release heat). Clearly, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$'s) reteases the largest amount of heat, $669.9 \mathrm{kcal} / \mathrm{mol}$.
33. 4 Energy is beiug absorbed in this reaction. By defmition, that makes it erodothermic.

Wrong Choices Explained:

(1) Exothermic reactions releast inergy as a product. That's not the case in this reaction, which requires energy as a reactant.
(2), (3) These are not wenfeasible choices since they hate the wrong word matched to the process described.

$$
\text { Remember: } \begin{aligned}
\text { EXO } & =\text { "out" } \pm \text { energv released as a product } \\
& \text { ENDO }=" m "=\text { energy absorbed as a reactant }
\end{aligned}
$$

34. 3 The rate of a reaction depends on several factors. including bow often molecules or atoms collide with one another. By inereasing the pressure on a gas systrin, thes molecules or atoms are "squeezed" closer, so they collide more frequently. This makes their rate of reaction increase.

This is analogous to reactions betwren solutions of compounds, which go at a faster rate if the concentration of solutions is increased. Increasing the pressure on at gas is like increasing its concentration, in moles/liter.

Lower pressure, less frequent collisions, lower reaction rate

Higher pressure. more frequent collisions. higher reaction rate
35. 4 In general, an equibbrium constant will change only with an increase in temperature. The concentration of reactants or products and the pressure may be adjusted, causing a shift in the equilibrium amunts present, but the equilibrium constant will not have changed. Only temperature changes the constant.
In this specific example, we have a very insoluhle material, $\mathrm{ApCl}(\mathrm{s})$, which, nevertheless, does dissolve to a tiny extent as ions.

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

In this case the equilibrium constant is modified and becomes a solubitity prod. uct constant.
$K_{e q}=K_{w}=\left[\mathrm{AG}^{+}\right]\left[\mathrm{Cl}^{-}\right]$without a denominator
An increase in temperature will permit more moles of $\mathrm{AgCif}(\mathrm{s})$ to dissolve as ions, so the $K_{s p}$ will change.

Wrong Choices Explained:

(1). (2) Changing the concentration of either Ag^{+}or Cl^{-}will cause an opposite shift in the concentration of the other ion. This is called the common ion effect. However, the $K_{\text {sp }}$ equilibrium constant will rernain the same throughout the shift. This can be illustrated by the following equations:

$$
\left.K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \text {or }\left[\mathrm{Ag}_{\mathrm{k}}^{+}\right]\left[\mathrm{Cl}^{-}\right] \text {or } \mid \mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

The concentration of each may
shift, but not
their product, $K_{1 p}$.
(3) Pressure causes shifts in gaseous systems but, like concentration, cannot change the $K_{e q}$ of those systems. In this solid/ion equilibrium the pressure has no effect at all-either on $K_{e q}$ or on equilibrium concentrations.
36. 4 Acids ionize to release an H^{+}ion. According to the Bronsted Theory, acids donate protons-which is the same ats saying they donate H^{+}, 0 ons.

$$
\mathbf{H X} \rightleftarrows \mathbf{H}^{+}+\mathbf{X}^{-}
$$

The degree to which an acid ionizes is reflected in the $K_{e q}$ for the reaction, which for acids is designated as K_{u}.

$$
K_{e q}=K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}
$$

An acid that ionizes to a large extent will be "strong," because it releases a lot of H^{+}ions, resulting in a large κ_{a} value.

Reference Table J gives the K_{0} values for certain acids.

Acid	$\frac{K_{a}}{}$	Relative Strength
HNO_{2}	5.1×10^{-4}	
$\mathrm{H}_{2} \mathrm{~S}$	1.0×10^{-7}	weakest (smallest K_{a})
$\mathrm{CH}_{3} \mathrm{COOH}$	1.8×10^{-5}	
$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.1×10^{-3}	strongest (largest K_{a})

37. 2

$$
K_{a}-\frac{[\text { conc. of product ions }]}{[\text { conc. of remaining acid }]}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
$$

38. 3 The pH scale is defined so that pure water (at $25^{\circ} \mathrm{C}$) has a pH of 7.00. The reason for this comes from the amount of ionization in pure water:

$$
\begin{array}{ll}
\qquad \mathrm{H}_{2} 0 \leftrightarrows & \mathrm{H}^{+}+\mathrm{OH}^{-} \\
0.0000001 \text { mole/liter } & 0.000000 \mathrm{I} \text { molefliter of each } \\
\text { will ionize. } & \text { of these is produced. }
\end{array}
$$

Therefnre, the concentration of H^{+}in purc water is 0.0000001 , or $1 \times 10^{\circ}$. mole/liter.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left(\mathrm{H}^{+}\right) \\
& \left.\mathrm{pH}--\log \left(1 \times 10^{-7}\right)=-\log \left(10^{-7}\right)=-,-7\right)=7
\end{aligned}
$$

39. 4 Mg is a fairly active metal and readily seacts with mosi acids io release hydrogen.

$$
\mathrm{Mg}+2 \mathrm{HCl}(\mathrm{ag}) \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

The other metals, Au (gold), Ag (silver), and Cu (copper), are relatively unreactive with acids.
Reference Table L confirms this. The reduction potential for Mg^{2+} is toner than that for H^{+}, while the reduction potentials for the ions of the other atoms are higher than that of H^{+}.

	Standard Electrode/Reduction Potential, in volts
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	$E^{\circ}=1.50$
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	$E^{\circ}=0.80$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$E^{\circ}=0.34$
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	$E^{\circ}=0.00$
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	$E^{\circ}=-2.37$

If Au, Ag, or Cu were to react with H^{+}, each would form its enrrasponding ion. But these ions would recapture the electron more readily than the H^{+}ion could, so it could not be reduced to H_{2}. In other words, Au, Ag, and Cu will not give electrons to H^{+}, and so no reaction can occur between them and the acid. However, Mg^{2+}, when formed in the reaction, will not compete with H^{+} for the electron. In other words, $\mathrm{Mg}(\mathrm{s})$ will react with acids.
40. 3 Conjngate pairs are any two species (molecules or ions) that are converted into one another by a mere gain or loss of H^{+}.

$$
\mathrm{HCl} \Rightarrow \mathbf{H}^{-}+\mathrm{Cl}^{-} \text {Conjugates }
$$

In the full equation there are two such corjugate pairs.

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \nsim \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \text {Conjugate acid-base pairs }
$$

Wrong Choices Explained:

(1) HCl donates an H^{+}during the forward reaction; $\mathrm{H}_{3} \mathrm{O}^{+}$donates an H^{+} during the reverse reaction. Both are serving as Brönsted acids, but they are not a conjugate acid-base pair.
(2) HCl is giving its H^{+}to $\mathrm{H}_{2} \mathrm{O}$ in the forward reaction. We say the HCl is acting as the acid and the $\mathrm{H}_{2} \mathrm{O}$ is acting as the base. This is an acid-base pain, but not a conjugate acid-base pair, because they are not formed from one another by an H^{+}exchange.
(4) $\mathrm{H}_{2} \mathrm{O}$ accepts an H^{+}during the forward reaction; Cl accepts an H during the reverse reaction. Both are serving as Brönsted bases, but they are not a conjugate acid-base pair.
In summary:

$\underset{\substack{\text { Brönsted } \\ \text { acid }}}{\mathrm{HCl}}+\underset{\substack{\text { Brönsted } \\ \text { base }}}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \quad$ (forward reaction)
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$

Brönsted

acid}}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\substack{Brönsted

base}}{\mathrm{Cl}^{-}}\)(reverse reaction)
41. 2 Write the underlying half-reactions of this balanced ion cquation.

$$
\begin{aligned}
\mathrm{Sn}^{2+} \rightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-} & \text {(oxidation) } \\
2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Fe}^{2+} & \text { (reduction) }
\end{aligned}
$$

Note that for expry Sa^{2+} ion there are 2 electrims lost during oxidation. So, for 1 mole of $\mathrm{Sn}^{24} .2$ moles of electrons will be last.
42. 3 The molecule must add up to be neutral (0) charge). The oxdation numbers of H and O are standard: +1 and -2 , respectively. We solve for S :

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \\
& 2(\mathrm{H})+\mathrm{S}+4(\mathrm{O})=0 \\
& 2(+1)+\mathrm{S}+4(-2)=0 \\
& 2+\mathrm{S}-\delta=0 \\
& \mathrm{~S}-6=0 \\
& \mathrm{~S}=6
\end{aligned}
$$

43. 1 Write the underlying half-reactions of this balanced equation. Begin by assigning the oxidation number to each atom of the equation. This helps you spot the changes in number for some of the elements involved.

Oxidation: $2 \mathrm{Cl}^{-1}$ of the $4 \mathrm{Cl}^{-1}$ appear to have cthanged.

$$
2 \mathrm{Cl}^{-1} \longrightarrow \mathrm{Cl}_{2}^{\mathrm{e}}+2 \mathrm{e}^{-}
$$

Reduction: the single Mn^{++}ion appears to have changed

$$
\mathrm{Mn}^{+4}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{+2}
$$

We see that manganese has been reduced since
a. its oxidation number was reduced from +4 to +2 , and
b. it gained electrons, a change that is the heart of reduction.

Wrong Choices Explained:

(2), (3) These are not even feasible choices since they match the words "reduced" and "oxidized" with the wrong oxidation number changes.
"Reduced" means the oxidation numbers decreased.
"Oxidized" means the oxidation numbers increased
These choices have it backward.
(4) This choice is correct in stating that a change from +2 to +4 would be oxidation; however, it is not true of the manganese in the given equation. As seen ahove, it was the chlorine that was oxidized, for its oxidation number went from -1 to 0 .
44. 3 Write the underlying half-reactions

$$
\begin{aligned}
& \text { Oxidation. } 2 \stackrel{12}{\mathrm{Na}} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{e}^{-} \\
& \text {Reduction. } 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \stackrel{H}{H}_{2}
\end{aligned}
$$

The Na is oxidized; the H^{+}(in the $\mathrm{H}_{2} \mathrm{O}$) is reduced.
45. I Note oxidation number changes and write the underlying half-reactions.
Oxidation: $\quad 3 \stackrel{0}{\mathrm{Cu}} \longrightarrow \stackrel{+2}{\mathrm{C}} \mathbf{u}^{\mathbf{C}}+6 \mathrm{e}^{-}$
Reduction: Two of the nitrogens in the $8 \mathrm{HNO}_{3}$ are changed. You must'determine for yourself that N within the HNO_{3} (within the NO_{3}^{-}ion) has an oxidation number of +5 .

$$
\begin{aligned}
& 2 \stackrel{+5}{\mathrm{~N}}+6 \mathrm{e}^{-} \rightarrow 2 \stackrel{+2}{\mathrm{~N}} \text { (within NO) } \\
& \left(\text { within } \mathrm{HNO}_{3}\right. \text {) }
\end{aligned}
$$

The N^{+5} ion was reduced; however, the agent that allowed it to obtain electrons was the Cu^{0} that lost electrons. The Cu° is called the reducing agent. Note that it was itself oxidized.

> Reducing agents (here $\left.\mathrm{Cu}^{\prime t}\right)$ are oxidized.
> Oxidizing agents (here N^{+5}) are reduced.
46. I The reduction half-reaction is

$$
\mathrm{Cu}^{+2}+\mathrm{e}^{--} \rightarrow \mathrm{Cu}^{+!}
$$

One electron is needed to reduce one jon of Cu^{+2}. Therefore, 1 mole of electrons is needed to reduce 1 mole of Cu^{+2} ions.
47. 2 Isomers of a compound have the same empirical formula, but dif ferent structural formulas.

Choice	Structural Formula	Empirical Formula
Original compound	$\mathrm{CH}_{3} \mathrm{COOCH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}=\mathrm{CH}_{3} \mathrm{O}$
(1)	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
(2)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=\mathrm{CH}_{3} \mathrm{O}$
(3)	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
(4)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

The empirical formulas for the original mmpound and choice (2) are the same.
48. 4 This is an addition reaction. The triple bond is opened, allowing places for 4 atoms to join the molecule.

The answer can also be determined by the fact that " $2 \mathrm{Br}_{2}$ " is given in the equation. These 4 Br atorns must appear somewhere in the product(s) of the reaction. Only choice (4) shows 4 Br atoms, thereby balancing the equation.
49. I These symbols reprisent the benzene ring. The first symbol is a
shorthand way of writing the Kekile structure:

$\mathrm{C}_{6} \mathrm{H}_{6}$, Kekulé structure

解 lucalize, or spread, over the whole ring. This gave rise to the second symbol for benzene:

$\mathrm{C}_{6} \mathrm{H}_{6}$, delocalized electrons

Wrong Choices Explained:

(2) Methane is CH_{4} and contains only single toonds

(3) Acetylene is the ammercial name for etbyne. $\mathrm{C}_{2} \mathrm{H}_{2}$, which is straight chained and contains a tripie bond.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \quad \mathrm{C}_{2} \mathrm{H}_{2}
$$

(4) Cyclopropane is in ring, but emntains und single bonds between it: fiec carbon atoms

50. 2 Saturated hydrocartons contain only single bonds between carbon atoms. The suffixes of the compound names tell you what bonds are present in the compound.
Choice Name \qquad
ethene double bond
(2) ethane "-ane" indicates only single bonds
(3) ethylene another name for ethene
(4) ethyne "-yne" indicates the presence of a

ethyne $\begin{gathered}\text { "yne" indi } \\ \text { triple bond }\end{gathered}$
51. $3 \mathrm{C}_{n} \mathrm{H}_{2 n-2}$ is the general formula for the alkyne series, in which $\mathrm{C}_{3} \mathrm{H}_{2}$ is the first nember. Choice (1), $\mathrm{C}_{n} \mathrm{H}_{n}$, looks temptingly correct, but it's not applicable for the rest of the suries: $\mathrm{C}_{3} \mathrm{H}_{4}, \mathrm{C}_{4} \mathrm{H}_{6}, \mathrm{C}_{5} \mathrm{H}_{5}$.
52. 3 The molecules will be squcezed into a smalter volume, hut their numbers will not change. Molecules can't disappear
53. 2 With an increase in temperature more water molecules will evaporate as they receive the energy necessary to break free of the bonds holding them in the liquid state. In the gas state these molecules have more random motions than they did when in the liquid state. This increase in randomness is what un entropy increase is defined as

54. 1 The prochuct of the concentrations of Ba^{2+} ions and SO_{4}^{2-} ions must remain constant.

$$
\dot{K}_{s p}=\mathrm{a} \text { constant }=\left\{8 \mathrm{a}^{2+}\right\}\left[5 \mathrm{~S}_{4}^{2-}\right\}
$$

If $\left[\mathrm{Br}^{2+}\right]$ is increased, then $\left[\mathrm{SO}_{4}^{2-}\right]$ must decrease in the same proprotion so the product of both remains cinnstant

$$
K_{\mathrm{sp}}=\left[\mathrm{Ba}^{2-}\right](\operatorname{sof}-\mathrm{i})
$$

Set also question 35.
55. 1 More $\mathrm{H}_{3} \mathrm{O}^{+}$ions mean a more acidic solution. 'The pH scabe is designed so that stronger acids bave smaller pII numbers.

$$
\begin{aligned}
& \text { Stronger aci } \\
& \mathrm{H}_{3} \mathrm{O}^{+} \text {ions }
\end{aligned}
$$

56. 2 This question describes the hoiling of water at $100^{\circ} \mathrm{C}$. Heat energy is needed to boil the water. This energy allows molecules to break free of the bonds holding thea together ats a liquid and become "freer" as a gas. This energy does not make the steam hotter than the boiling water: both are at $1\left(0^{\circ} \mathrm{C}\right.$. Since the heat energy did not cause the kinetic energy of the water molecules to changc, it must have gone into increasing the potential energy of the molecules.

PART TWO

Ciroup l-Matter and Energy
57. I The partial pressure of a gas can be (alculated from its mole fraction:

$$
\begin{array}{ll}
\begin{array}{l}
1 \text { mole of hydrogen } \\
+3 \text { moles of helium }
\end{array} & \mathrm{O}=\mathrm{H}_{2} \\
\hline 4 \text { moles of gas in flask } & =\mathrm{He}
\end{array}
$$

4. Mole fraction of tydrogen $=\frac{1}{4} \underbrace{\text { magen }}_{\text {moles of of has, total }}$

h. Partial pressure of hydrogen $=$ mole fraction \times total pressure

$$
\begin{aligned}
& p_{\mathrm{H}_{2}}=0.25 \times 400 \text { torr } \\
& p_{\mathrm{H}_{2}}=100 \text { tor }
\end{aligned}
$$

58. 3 One mole is defined as 6.02×10^{23} molecules, just as one dozen eggs is defined as 12 eggs. The nitrogen here has only $1.5 \times 10^{\mathrm{aj}}$ molecules, which is a fraction of a mole.

$$
\text { amount of nitrugen }=\frac{1.5 \times 10^{23} \text { molecules }}{6.02 \times 10^{23} \frac{\text { molecules }}{} \text { mole }}=0.25 \text { mole }
$$

Any material having this same number of moles must have that same number of molecules, mamely, 2.5×10^{23}. Choice (3) is the answer herause it also contains 0.25 mole. That it mentions O_{2} is imelevant, just as the $\mathrm{H}_{2}, \mathrm{He}$, and Ne named in the other choices are irrelevant. Only the moles matter.
59. 4 "Fusion" means melting: (s) \rightarrow (ℓ). If you didn't know this, you might recall that "heat of fusion" is the name applied to the heat needed to melt materials, like ice. Or you could get the answer by fliminating the other choices which are clearly wrong.

Wrong Choices Explained:
(1) Condensation means (g) \rightarrow ($($)
(2), (3) Vaporization and evaporation both mean (f) \rightarrow (g)
60. I The gas laws, such as Charles' Law, Boyle's Law, and $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$, are technically for "ideal" gases. The behaviors of most real gases can be adequately (but not perfectly' calculated by these equations. Here are the differences between ideal and real gases.
a. $\frac{\text { Molecules are mere points, }}{\text { Ideal Gases }}$ having no volume coutribution to the total volume of the gas.
b. Molecules of the gas have no mutual attractions between themselves.

$$
\begin{aligned}
& \text { a. } \frac{\text { Meal Gases }}{\begin{array}{l}
\text { Molecules themselves ocoupy a } \\
\text { small fraction of the volume. }
\end{array}} . \frac{\text { and }}{}
\end{aligned}
$$

b. Attractive forces exist between molecules in varying degrees.

Fewer molecules mean less proportion of the rotal volume.
Molecules further apart mean less attractive forces between them.
Faster motion means attractive forces are diminished in their effects.

Result: Behavior closer to an ideal gas.

If the temperature of a real gas is high, then the attractive forces between molecules will have a proportionally diminished effect because the molecules have a higher vekcity, while the attractive forces have remained constant. If the pressure of a real gas is low, then the molecules are further apart, so their attractive forces are lessened and their own volumes are even less of the total volume. These two conditions, high temperatures and low pressures, cause a real gas to behave most like an ideal gas.

Ideal Gas

Molecules are points, with no attractive forces.

Real Gas

Molecules have measureable volumes; attractions exist between neighbors.
61. 2 The volume and pressure of an ideal gas are inversely prnartional. Curve B shows such a relationship.

Pressure

Wrong Choices Explained:

(1) Curve A deseribes a direct relationship. As one variable increases, the other variable also increases, though not by the same proportion. This partictlar curve might represent a square-root relation.

(3) Curve C describes a clirect proportionality. As one variable increases. the other increases by the salme proportion. The relationship between volume and mass of a liguid might be an example descriled by this type of curve.

(4) Curve D describes a constant. The value of the ff variable does not change if the x variable is changed. This is true, for example, of the value of ant equilibrium constant if pressure is varied.

Group 2-Atomic Structure
62. 3 The three fundaniental particles of chemistry are the electron, proon, and neution. Their exact masses are given below. For most purposes their masses are rounded off to 0,1 , and 1 amu , respectively, for e, p, and n. For most purpuses the proton and neutron are regarded as having the same mass, 1 amu. The druteron is not a fundamental particle, but the nucleus of deuterium (an isptope of hydrogen), and consists of a proton together with a peutron. Its mass is 2 amu.

Particle	Exact Mass, in amu	
	0.00055	Exact Mass, in grams
electron	1.00728	9.11×10^{-28}
proton	1.00867	1.670×10^{-24}
neutron	2.01595	1.672×10^{-27}
deuterium $(n+p)$		$3.342 \times 10^{-2 .}$

63. 2 A quick approach is to note that the element with atomic number 10 will have 10 electrons, while Na (atomic number 11) will have 11 electrons. If Na should give away one electron, the Na^{+}ion that results will have only 10 electrons remaining. So, the electron configuration of Na^{+}must be identical to that of the element with atomic number 10 .
\(\left.\begin{array}{l}element with atomic number 10

\mathrm{Na}^{+} jon=\mathrm{Na} atom-1 \mathrm{e}^{-}=11 \mathrm{e}^{-}-1 \mathrm{e}^{-}=10 \mathrm{e}^{-}\end{array}\right\}\)| same number |
| :--- |
| of electrons |

A longer approach would be to write unt the electron configurations fors the droices:

Choice	Number of Electrons	Electron Configuration	
element with atomic number 10	10	$1 s^{203} s^{2}-2 p^{n}$	same
(1) Na	11	Ls $s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$	
(2) $\mathrm{Na}{ }{ }^{\text {a }}$	10 (one less than Na)	L. $s^{2} 2 s^{2} 2 p^{6}$	
(3) Cl	17	! $s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$	
(4) Ci^{-}	18 (one more than Cl)	$4 s^{2} 2 s^{2} 2 p^{6} 33 s^{2} 3 p^{\text {b }}$	

64. 4 Electron dot symbols show the outer, valence electrons only. These ; outer electrons can be only in the s or p orbitals because d and f orbitals are always within an outer (valence) shell of s or p electrons. In other words, dot
pictures can be translated into orbital notation. Esing the periodic tabl we pictures can be translated into orbital notation. Esing the periodic table we make a visual inspection to see if any of the orbital notations in the question match a known metalloid.

Choice	Dot Symbol	Equivalent Orbital Nolation	Any Metalloid with Same Notation?
(1)*	X .	s^{1}	No, this designates the active metals of Group IA. (*See note)
(2)	X:	s^{2}	No, this designates He and Group IIA metals.
(3)	$: \ddot{x}:$	$s^{2} p^{6}$	No, this designates Group O inert gases fromi Ne down.
(4)	\cdots.	$5^{2} p^{3}$	Yes, the clement As (atomic number 33), which is a metalloid in Group VA, ends with $4 s^{2}-4 p^{3}$.

* Note: This may have been a misleading question. Choice (1) could be the dut symbol of H with its one s^{1} electron. And on the Periodic Table, hydrogen is surrounded by a heavy-lined box, which means that it, too, can be considered a metalloid. Choice (4), however, was the official answer.

65. 2 Fluorine (atomic number 9) must have 9 electrons whether it is in the ground state or in an excited state. Choices (3) and (4) are automatically climinated because they show 10 electrons.

> Choice (1) is the ground state of $\mathbf{F}:\left\{s^{2} 2 s^{2} 2 p^{5}\right.$
> Choice (2) is an excited state of $\mathbf{F}: 1 s^{2} 2 s^{1} 2 p^{6}$

In the excited state, one electron (from the $2 s$ level) was promoted upward (tu the $2 p$ level).
$1 s^{2} 2 s^{21} 2 y^{36}$ One electron promoted
66. 1 According to Reference Table F , the half-life of radioactive ${ }^{33} \mathrm{P}$ is 14.3 days. This means that after each 14.3 days only half of the previous amount of ${ }^{32} \mathrm{P}$ remains.

Time Passed in days	Antount of ${ }^{32} \mathrm{P}$ Left, in grams
at start	32
14.3	16
28.6	8
42.9	4
57.2	2
71.5	I

This can also be solved by formula.

$$
n=\text { number of half-lives passed }=\frac{\text { time }}{\text { half-life }}=\frac{71.5 \text { days }}{14.3 \text { days }}=5
$$

amount remaining $=$ (original sample) $\left(\frac{1}{2}\right)^{\prime \prime}=(32 \mathrm{~g})\left(\frac{1}{2}\right)^{5}=(32 \mathrm{~g})\left(\frac{1}{32}\right)=1 \mathrm{~g}$
Group 3--Bonding
67. I The presence and strength of ionic bonds in a compound can bei determined from the electronegativity differences between its atoms. A differ ance of 1.7 or greater indicates ionic bonds.

Choice	Compound	Electronegativity Differences, Obtained from Reference Talic: I	Type of Bond
(1)	NaBr	2.8-0.9 $=1.9$	ionic
(2)	HBr	$2.8-2.1=0.7$	polar covalent
(3)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	Organic compounds are generally cavalent.	
(4)	CO_{2}	$3.5-2.5=1.0$	polar covalem

$\mathrm{CO}_{2} \quad 3.5-2.5=1.0$
68. 2 To have a nompolar covalent bend, the electronegativity difference
號 diatomic molecules like $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{H}_{2}$, and O_{2}. The electronegativity difference molecules $\mathrm{H}_{2}, \mathrm{~N}_{2}$, and Br_{2}. The element krypton, however, being inert, does between atoms in the other choices will he greater than 0 but less than 1. it not bond even with itself. Kr atoms are also molecules
Their bonds will be polar covalent.
69. 4 When the temperature is \quad The formula for a molecule of gas identifies the structure of the gas at specified rm a crystalline arrangement we call stid boring molecules of water together arc onls moderate it strength being pry respectively.
marily hydrogen bonds between motecules. This is the essence of a molecula solid: molecules bound to each other by moderate attractive forces. The mole. cults are close to one another but they have not lost their identity as separater individual moiecules.

Weak van der Waals and polar bonds difference between O and H is $3.5-2.1=1.4$. A $\mathrm{C}-\mathrm{S}$ bond is nonpolar covalent because the two elements have the same electronegativities, 2.5 $2.5=0$. Water molecules will therefore be polar, while carbon disulfide molecules will be nonpoiar. And water molecules will have attractive forces that hold them together as a solid or liquid, while CS_{2} will have no such intermolecule. attractions. That's why water does not vaporize to the extent that CS_{2} does. $\mathrm{H}_{2} \mathrm{O}$ has a low vapor pressure; CS_{2} has a high vapor pressure.

Wrong Choices Explained:

(I) $\mathrm{H}_{2} \mathrm{O}$ is actually a smaller molecule than CS_{3} but size is not the issul 73 . I The metads of Group IIA are atso known as alkaline earth metals here. Molecule size can be estimated using the covalent atouic radius kive the Periodic Table. Remember that the aton diameters below are twice the Periodic Table. Rem
radius given in the table.

Ag is in that group, together with $\mathrm{Be}, \mathrm{Ca}, \mathrm{Sr}$, and Ba .
rong Choices Explained:
(2) Zn is in Group IIB. All the B-group elements are known as transition dements.
(3) Li is in Group IA. These are known as alkali metals.

74. : To become an S^{2-} ion, the S^{0} atom must gain two clectrons

$$
S^{0}+2 e^{-} \rightarrow S^{2-}
$$

These two electrons go into the two openings of the outer $3 p$ sublevel of sulfur.

$$
S^{0}=1 s^{5} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}
$$

$$
s^{2-}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
$$

hese extra two electrons will increase the repulsive forres between all the poter electrons so that the $3 s$ and $3 p$ sublevels will be slightly swelled. or xpanded, in size
In summary, the S^{2-} ion has a larger radius because it has more electrons man the S° atoru.
75. 3 Transition metals, which are located in the B groups on the Periodic rable, usually give colored ions in solution. For example. Cu^{2+} is blue, Fe^{3+} 5 rust red, Ni^{2+} is green, Mn^{7+} is dark purple, and Cr^{3+} is dark green.
76. 2 Fluorine is element number 9 ; oxygen is element number 8 . The \mathbf{F} ucleus has 9 protons, giving it a +9 charge. The O nucleus has 8 protons, jving it a +8 charge. The outermost electrons of both elements are in the recond principal energy level. However, the stronger +9 charge in $\mathrm{F}^{\prime} \mathrm{s}$ nuckeus (2) $\mathrm{H}_{2} \mathrm{O}$ is actually smaller in molecular mass than $\mathrm{CS}_{\text {o. }}$. This suggests thetracts these electrons more than does O's nucleus. This extra nuelear charge it should vaporize more easily, but it doesn't-because of the attractive bond explains two facts holding $\mathbf{H}_{2} \mathrm{O}$ molecules to each other.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O} & =2+16=15 \mathrm{amu} \\
\mathrm{CS}_{\mathrm{a}} & =12+32+32=76 \mathrm{amu}
\end{aligned}
$$

(3) Neither $\mathrm{H}_{2} \mathrm{O}$ nor CS_{2} has ionic bonds within or between its mellecule

Group 4--Periodic Table

72. 2

Period	Oiatomic Elements
1	H_{2}
2	$\mathrm{N}_{2}, \mathrm{O}_{1}$ and F_{2}
3	Cl_{2}
4	Br_{2}

a. The F atom has a slightly smaller yadius than the O atom.
b. The \mathbf{F} nucleus keeps a stronger hold on its outer electrons. Its ionization cnergy is higher than oxygen's (see Reference Table I).

Group 5-Mathematics of Chemistry

77.
78. 1 The easiest way to handle this question is simply to find the molecule with mass 16 :

$$
\mathrm{CH}_{4}=12+1+1+1+1=16
$$

The others are much heavier than 16 , and, in fact, none of them reduces to an empirical formula of CH_{4}.
78. 4 One molecule of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5}$ clearly contains I2 atoms of hydrogen Theretore, 1 mole of this material has in it 12 moles of hydrogen.
Here's an analogy. If a box contains 6 hamburger rolls, how many dozen rolls
are held by a dozen twous. Answer: 6 dozen rolls. Of course, altogether there woukd be $(6 \times 12)=72$ rolls. The question didn't ask how many rolls there are, however, but how many dozens of rolls.

Similarly, this chemistry question doesn't ask how many molecules of hydrogen there are, but how many moles of hydrogen there are. There are 12 moles of H atoms; this does mean there are $12\left(6.0 \times 10^{23}\right)$ atoms of bydrogen, but that's not asked for by the question. Choice (2) is wrong for this particular question.
79. 2 One mole of any gas at STP docupies 22.4 liters. If we know the mass of 22.4 liters of the gas, then we'll have its mole mass, which, in turn, is also its molecular mass
a. Mole mass of this gas $=\frac{2.0 \mathrm{~g}}{\text { liter }} \times \frac{22.4 \text { liters }}{\text { mole }}=44.8 \frac{\mathrm{~g}}{\text { mole }}$
b. Molecular mass must be 44.8 amu, which rounds to 45 amu.
80. 1
heat absorbed $=$ (mass of water) \times (temperature change, in ${ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& q=(m) \times(\Delta t) \\
& q=(5 \mathrm{~g}) \times\left(15^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right) \\
& q=(5 \mathrm{~g}) \times\left(5^{\circ} \mathrm{C}\right) \\
& q=25 \mathrm{cal}
\end{aligned}
$$

81. 4 Obtain the atomic mass of each clement in 1 molecule of $\mathrm{C}_{2} \mathrm{H}_{6}$.

$$
\text { carbon: } \quad 2 \times 12=24 \mathrm{dmu}
$$

$$
\text { hydrogen: } 6 \times 1=6 \mathrm{amu}
$$

carbion : hydrogen ratio $=\frac{\text { carbon mass }}{\text { hydrogen mass }}=\frac{24 \text { amu }}{6 \text { amu }}=\frac{4}{1}=4: 1$

Group 6-Kineties and Equilibrium

K3. 3 All of these compounds are highly insolıble in water. However, a tiny amount will dissolve. The extent to which they will dissolve is given by the "solubility product equititsium constant," $K_{s p}$, shown in Reference Table K. The smallest $K_{s p}$, value indicates the material that dissolves least. which would make the "most dilute" solution. That is clearly ZnS .

$$
K_{r p} \text { of } \mathrm{ZnS}=1.6 \times 10^{-23}=\left(\mathrm{Zn}^{2+}\right)\left(\mathrm{S}^{2-}\right)
$$

34. 2 Memorize the equation: $\Delta C=\Delta H-T \Delta S$. Here is one interpretation of this equation.

\[

\]

85. 3 A $K_{s,}$ expression contains only the concentration terms of the products. These concentration terms, $[X]$, are raised to an exponent equal to the onefficient in the balanced equation: $\{x\}^{\text {verefictent }}$.

$$
\mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}
$$

$$
K_{s p}=\left[\mathrm{M}_{g^{2+}}\right]\left[\mathrm{OH}^{-}\right]^{2} \quad \text { Coefficient becomes exponent. }
$$

86. I Reference Table K gives the $K_{s p}$ for BaSO_{4} as 1.1×10^{-10}.

Group 7-Acids and Bases

87. 3 Remember that an H^{+}ion is the same thing as a proton. Here we see that one water molecule donates a proton $\left(\mathrm{H}^{+}\right)$, while the other water molecule accepts it.

$$
\xrightarrow[\substack{\mathrm{H}^{+} \\ \text {transierred }}]{\text { (base) }} \stackrel{\text { (acid) }}{\mathrm{O}-\mathrm{H}}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

Since water here acts as both a proton acceptor and donor, it is said to be acting Rererence Table E

$$
\text { potassium chloride, } \begin{aligned}
\mathrm{KCl}(\mathrm{~s}) \Delta H_{f}^{\circ} & =-104.2 \mathrm{Kcal} / \mathrm{mol} \\
\Delta G_{f}^{\circ} & =-97.6 \mathrm{Kcal} / \mathrm{mol}
\end{aligned}
$$

88. 2 Only a basic solution will catuse litmus to tum from red to blue. We must find which one of these gases. when dissolved in water. forms a basic solution. By standard laboratory experiments and by direct memorization of The ΔH value tells you how much heat is rolased it this reaction (the minu required material, chemistry students will recognize that NH_{3}, ammonia, is the
sign meams the reaction is exothermie): the ΔG value tells you that the reactionrequired gas.
oceurs spontaneously the minus sign means the reaction was spontancousif

$$
\mathrm{NH}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}\left(\mathrm{H}^{2}\right. \text { (abase) }
$$

are not the determinants for spontancousmess.
The other sases form acid solutions.

Reference Tables J and \mathbf{K} can also be used to determine what is formed when thesc gases are dissolved in, and thus react with, water. Reference Table] shows the extent to which they form acid solutions.

$\stackrel{\text { Reaction }}{\underline{K_{a}}}$	
$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}^{+}+\mathrm{HS}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$	1.0×10^{-7}
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$	4.4×10^{-2}
$\mathrm{NH}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NH}_{2}^{-}$	very small, $<10^{-36}$

From this we see that $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$, and CO_{2} will form H^{+}ions (acid) to a measurable extent. The NH_{3} reaction is negligible, since its K_{c} is not evel measurable. So, NH_{3} can't make an acid solution. However. NH_{3} can make of basic solution, as indicated in Reference Table \mathbf{K}.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

89. 4 The best conductor is the acid that ionizes most, releasing must H^{+} ions. This can be determined from Reference Table J. We need to find the acid with the largest K_{a} value. This is HNO_{3}, whose K_{o} is given as "very large.

Wrong Choices Explained

(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is ethyl alcohol. It does not ionize and so cannot conduct elec tricity.
(2) $\mathrm{CH}_{3} \mathrm{COOH}$ is acetic acid. It does ionize to form H^{+}ions, but only to al small extent. Its K_{a} value is given as 1.8×10^{-5} in Reference Table J.
(3) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is glucose. Like most organic compounds, it doesn't ionize and doesn't conduct electricity.
90. 4 This product, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$, is ahways 1×10^{-14}. Its symbol is K_{t}

Wrong Choice Explained:

(3) This would be the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in this solution. Remember that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{H}^{+}\right]$are equal, interchangeable terms.

$$
\begin{aligned}
K_{w} & =\left(\mathrm{H}^{+}\right)\left(\mathrm{OH}^{-}\right) \\
1.0 \times 10^{-14} & =\left(\mathrm{H}^{+}\right)\left(1 \times 10^{-6}\right) \\
\left(\mathrm{H}^{+}\right) & =\frac{\left(1.0 \times 10^{-14}\right)}{\left(1 \times 10^{-8}\right)}=1 \times 10^{-6}
\end{aligned}
$$

91. I Amphiprotic ions can either give out or take in a proton (which is s H^{+}ion). Such ions can be located using Reference Table J because they appear on two lines and two sides in the tabie: first as an acid, second as a base. This is true of HSO_{4}^{-}.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \leftarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{\text {(base) }} \\
& \text { (reverse arrow from Reference Table J! } \\
& \mathrm{HSO}_{4}^{\text {(asid) }} \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
\end{aligned}
$$

Wrong Choices Explained:
(2) NH_{4}^{+}can give out a H^{+}ion, but cannot take one in.

$$
\mathrm{NH}_{4}^{+} \rightarrow \mathrm{H}^{+}+\mathrm{NH}_{3}(\text { in Reference Table } \mathrm{J})
$$

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}^{+} \mathrm{X}+\text { does not oceur }
$$

(3). (4) NO_{3}^{-}and Cl^{-}can take in an H^{+}ion, but, since they obviously contain no H atoms, they can't give out an H^{+}ion.

Group 8-Redox and Electrochemistry

92. 4 Once a chemical cell has reached equilibrium, there is no further chemical reaction occurring. No electricity can be made, and so the voltage is 0 .
93. 2 Write the underlying lalf-reactions and obtain their potentials from Reference Table L

$$
\begin{array}{ll}
\text { oxidation: } 2 \mathrm{Al}^{10} \longrightarrow 2 \mathrm{Al}^{3+}+6 \mathrm{e}^{-} & E^{\circ}=+1.66\left(^{*} \text { sce note }\right) \\
\text { reduction: } 3 \mathrm{Cu}^{2+}+6 \mathrm{e}^{-} \rightarrow 3 \mathrm{Cu}^{\prime} & E^{\circ}=+0.34
\end{array}
$$

total $E^{\alpha}=+2.00$ volts
*Note:
a. This equation is the reverse of that printed in Reference Table L, which shows reductions, not oxidations. Therefore, E° here has the sign opposite to that indicated in the Reference Table, +1.66 volts instead of -1.66 volt.
b. This equation is actually double the one that is printed in Reference Table I. The Cu^{2+} equation is triple the one given in Reference Table L. However, the E^{0} values are not changed. The same voltage, E°, is produced no matter how many times the equation and moles of reactants are multiplied.
94. 2 The half-reactions from the previous problem reveal that electrons are being given out by the Al^{0} and being used up by the Cu^{2+} ions. They trave] through the wire from the At electrode over to the Cu electrode, then meet the Cu^{2+} from the solution.

95. 3 There are two ways to approach this problem.
a. Mg can replace a metal ion from solution only if the metal is less active than Mg . Ag (silver) is less active than Mg , so Mg can replace Ag^{+}ionst from solution.

$$
\mathbf{M g}+2 \mathrm{Ag}^{+} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Ag}
$$

b. From an electric potential approach, if the Mg is to react it must bef oxidized.

$$
\mathrm{Mg}^{0} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-}
$$

The oxidizing agent must have a reduction potential greater than that of thef Mg^{2+} ion just formed, or else the Mg^{2+} ion will recapture the electrons given off. From Reference Table L,

$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	$E^{\circ}=+0.80$ volt
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}$	$E^{\circ}=-2.37$ volt
$\mathrm{Sr}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sr}$	$E^{\circ}=-2.89$ volt
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ba}$	$E^{\circ}=-2.90$ volt
$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Li}$	$E^{\circ}=-3.00$ volt

Only Ag^{+}has a reduction potential that can capture the efectrons from Mg and: prevent Mg^{2+} from retaking them.
96. I When KBr is fused (melted), the K^{+}and Br^{-}ions are free to migrate. toward electrodes.

Group 9-Organic Chemistry

97. 4 A dihydroxy alcohot must contain two OH groups. Only $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$

Wrong Choices Explained:
(1), (3) These contain OH^{-}groups, but they are not alcohols. They are organic bases
(2) $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OH}_{3}\right.$ is a trihydroxy alcohol called glycurol

98. 3 A primary alcohol has the OH group attached to a carbon atom which is linked to one other C atom. This will be a C atom at the end of a straigh chain.

Primary Alcohol
Secondary Alcohol
Tertiany Alcohol
to 1

Choice (3):

OH on a C attached to just 1 other C atom

Wrong Choices Explained:

(1) This is an organic acid.
(2) This is an aldehyde
(4) This is a secondary alcohol

At the negative electrode, electrons are picked up by the K ions, which is reduction.
$K^{+}+\mathrm{e}^{-} \rightarrow \mathbf{K}^{\mathbf{0}}$

At the positive electrode, electrons are released by the Br^{-} ions, which is oxidation.
$2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 e^{-}$
99. $1 \mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{\text {; }}$ is qucerol. Its IUC name is 1.3 .3 -trihydroxypropume See also explanation for choice (2) of guestion 97.

Wrong Choices Explained:

(2) Ethylene glycol is the common name for 1,2-dihydroxyrthase

$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$
$\mathrm{OH} \quad \mathrm{OH}$
(3) Propene is $\mathrm{C}_{3} \mathrm{H}_{6}$.

(4) Propanoic acid is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$.

100. 2 Ketones have an O atom attached to some inner C atom.

Choice (1) $\mathrm{CH}_{3} \mathrm{OH}$
Choice (2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Choice (3) $\mathrm{CH}_{3} \mathrm{COOH}$

Choice (4) $\mathrm{CH}_{3} \mathrm{COOCH}$

OH

Ester
(3) The Haber process is the commercial method of making ammonia from nitrogen and hydrogen.
(4) The contact process is the commercial method of making sulfuric acid from sulfur or sulfide ores.
104. 1 In a chemical cell the positive electrode is where electrons are being used by the reactions; the negative electrode is where electrons are being released by the reaction. The underlying half-reactions for a nickel-cadmium battery are as follows:

$$
\begin{aligned}
& \mathrm{Ni}^{1+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Ni}^{\prime \prime} \text { reduction, at }+ \text { electrode) } \\
& \mathrm{Cd}^{0} \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{e}^{-} \text {(oxidation, at }- \text { electrode) }
\end{aligned}
$$

The material that makes up the positive electrode must contain the Ni^{3+} ion, namely, $\mathrm{N} i(\mathrm{OH})_{3}$.
105. 4 Iron, tin. and lead are obtained commercially by reducing their oxides with coke (carbon). See question 100 . Potassium, being an active metal. cannot be obtained from its salts or oxides by reaction with carbon. Electricity must be used. The potassium compound is first purified, then melted under high temperature. Electricity is passed through the liquid, and the \mathbf{K}^{+}ions migrate toward the positive terminal, where they are reduced to K°.

106. 3 The contact process has three fundamental steps:
a. "Roast" the ore or sulfur to make sulfur dioxide.

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{1} \quad 2 \mathrm{FeS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{FeO}+2 \mathrm{SO}_{2}
$$

b. Oxidize sulfur dioxide to sulfur trioxide with a catalyst.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{v}_{2} \mathrm{OS}_{5}} 2 \mathrm{SO}_{3}
$$

c. Bubble the sulfur trioxide in water to make salfuric acid.

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Wrong Choices Explained:
(1) The catalyst, vanadium pentoxide $\left(\mathrm{V}_{2} \mathrm{O}_{5}\right)$, is used, not to make SO_{3} directly from pure S , but from SO_{2}.
(2), (4) Ozone, O_{3}, is not part of the contact process. Choice (4) is also not balanced; it should be eliminated on that ground alone.

Group 11-Nuclear Chemistry

107. $2{ }^{234} \mathrm{U}$ disintegrates slowly into ${ }^{206} \mathrm{~Pb}$ and other products. Reference Table L gives a half-life of 4.51×10^{9} years, about $4 \frac{1}{2}$ billion years. As time passes, the ratio of lead to uranium slowly increases. This ratio can be used to passes, the ratio of pead to
date geologic formations.

Wrong Choices Explained:

Radioactive compounds are used for these medical purposes. However, the material used must have a short half-life so that detection and treatment is not a prolonged health risk.
(1) For diagnosing thyruid disorders-radioactive iodine is used.
(3) For detecting brain tumors-radioactive potassium is used to follow the blood flow.
(4) For treating cancer-powerful radioactive sources are used to produce radiation that kills cancer cells.
108. 4 In this equation. lighter atoms are forming heavier atoms. This is the essence of fusion.

Wrong Choices Explained:
(1) Alpha decay is the process in which a larger atom disintegrates into smaller atom and a hetium nucleus (the alphs particle)

(2) Beta decay is the process in which a neutron of an atom disintegrates to roduce a proton and an electron. The proton remains behind, resulting in 2 new element with an atomic number greater by 1 more than that of the starting element. The electron shoots away and is called a beta particle.

(3) Fission is the breaking of large nuclei into smaller ones, with the releas f great energy. Fission is "triggered" by bombardment, usually by a neutron (n) \rightarrow

1(4.). 3 Heavy water, like ordinary water, has the formula $\mathrm{H}_{2} \mathrm{O}$. The difference is that the hydrogen atoms in heavy water are the isotope ${ }_{1}^{2} \mathrm{H}$ or ${ }_{1}^{3} \mathrm{H}$ instead of ordinary ${ }_{1}^{1} \mathrm{H}$.
Heavy water is used to remove the heat energy of fission reactors from the "core" to a heat exchanger. (Eventually, this heat is used to boil regular water into steam to drive electric generators.) Heavy water is also used as a moderator. Moderators cause neitrons to slow down so they become more cffective as triggers to start more fission reactions. See question 108.

Wronk Choices Explained

(1), (2) Cd and B can stop and capture neutrons, so they are used in cuntrol rods to reduce or shut off a nuclear reaction.
(4) Graphite, C, is like heavy water-it moderates or slows down neutrons to make them more effective triggers of fission. Unlike heavy water, C is not a coolant
110. 4 Most fissinn reactors started out using uranium as their fuel. Recently plutunium, specifically ${ }^{23 y}(\mathrm{Pu}$, has become favored as a fuel because it can be "bred" (produced) cheaply from ongoing uranium nuclear reactors.
Plutonium is a controversial fuel. If it is produced too abundantly. there is a danger that some nations and/or terrorists could use it for weapons rather than electric energy. It also has a balf-life of 24,000 years, which means that, should too much of it be produced artificially, nations will have problems in storing it before it's used as a fuel. U-235 is produced in just enough quantity to be used immediately as a fuel. Pu-239 may become too abundant . . . a very real danger

Wrong Choices Explained

(1), (2), (3) These can be eliminated as fission fucls because they are lightweight atoms. Fission requires large atoms such as $\mathrm{U}-235$ and $\mathrm{Pu}-239$ as fuel.
111. I In all such nuclear transformations two key rules mist he oheyed:
a. The total mass numbers of reactants and products must be equal
b. The total electric charge numbers must also be equal on both sides of the equation.

$$
\begin{gathered}
27+4=30+1 \\
{ }_{13}^{27} \mathrm{AJ}+{ }_{2}^{4} \mathrm{He} \longrightarrow{ }_{55}^{30} \mathrm{P}+{ }_{0}^{1} X \quad \text { Mass numbers } \\
13+2=15+0
\end{gathered}
$$

The unknown particle is ${ }_{0}^{1} X$, which is a neutron.

Group 12-Laboratory Activities

112. 4 Filtering separates insoluble substances in a water mixture.

Wrong Choices Explained:

(1) Precipitates are formed by chemical reactions. Sometimes precipitatious are made to settle faster by centrifuging. This involves spinning the solution at high speed in a centrifuge. The precipitate settles to the bottorn of the tube used.
(2), (3) Boiling is a quick way to separate the water and dissolved particles from one another in a solution. Technically, this is called distillation, or "evaporation to dryness."
113. 2 As time gows hy, the temperature of this material will decrease, but not in the systematic, linear manner of choice (3). There will he stretches of time where the temperature will not decrease cuen though heat is loeng removed. These will vecir during phase changes

Time (min.)
114. 3

$$
\begin{aligned}
& \text { Ferror }=\frac{\text { ohserved value }- \text { accepted value }}{\text { accepted value }} \times 100 \\
& \text { \% error }=\frac{55.2^{\circ} \mathrm{C}-50.1^{\circ} \mathrm{C}}{50.1^{\circ} \mathrm{C}} \times 100=\frac{\left(5.1^{\circ} \mathrm{C}\right)}{\left(50.1^{\circ} \mathrm{C}\right)} \times 100 \\
& \text { \% error }=10.2 \%
\end{aligned}
$$

115. 4

$$
\begin{aligned}
\text { (volume of acid) }(\text { strength of acid } ; & =(\text { volume of base })(\text { strength of base }) \\
(20.6 \mathrm{mi})(\mathrm{x}) & =(40.0 \mathrm{ml})(0.20 \mathrm{M}) \\
x & =\frac{(40.0 \mathrm{ml})(0.20 \mathrm{M})}{20.0 \mathrm{ml}} \\
x & =0.04 \mathrm{M} \mathrm{HCl}
\end{aligned}
$$

116. I In addition, the sum cannot be more precise than the decimal place in the least precise of the numbers.

0.027 g +0.0023 g	(precise to thousandths place)
0.0298 g	
0.029 g	(now precise to ten-thousandths place)

The digit " 3 " in 0.0293 g was dropped, and the number rounded off to $0: 029$ g.

Illustrative examples of rules for significant digits in answers.
Addition and subtraction-no digits allowed beyond the decimal place of the least precise of the numbers
Multiplication and division-same number of significant digits as are in number with least number of such digits

$\begin{array}{r} 0.027 \mathrm{~g} \\ +0.0023 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{r} 0.027 \mathrm{~g} \\ -\quad 0.0023 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{r} 0.027 \mathrm{~cm} \\ \times 0.002 \quad 3 \mathrm{~cm} \\ \hline \end{array}$	$\frac{0.027 \mathrm{~g}}{0.0023 \mathrm{mi}}=$
0.0293 g	0.0247 g	$0.0000621 \mathrm{~cm}^{2}$	$11.73913043 \mathrm{k} / \mathrm{ml}$
0.029 g (to thousandths place only)	0.025 g (rounded up to thousandths place only)	$0.000062 \mathrm{~cm}^{2}$ (two significant digits only)	$12 \mathrm{~g} / \mathrm{ml}$ (two significant digits only)

