Balancing Equations (2)

- (1) Which equation shows a conservation of mass?
- A) $\operatorname{Na} + \operatorname{Cl}_2 \rightarrow \operatorname{NaCl}$ C) $\operatorname{H}_2 O \rightarrow \operatorname{H}_2 + O_2$
- B) $Al + Br_2 \rightarrow AlBr_3$ D) $PCl_5 \rightarrow PCl_3 + Cl_2$

(2) Given the balanced equation with an unknown compound represented by *X*:

$$C_6H_{12}O_6(aq) \xrightarrow{\text{enzyme}} 2X + 2CO_2(g)$$

Which compound is represented by *X*?

- A) $CH_3OH(aq)$
- B) $CH_2(OH)_4(aq)$
- C) CH₃CH₂OH(aq)
- D) CH₂OHCH₂OH(aq)

(3) Given the unbalanced equation:

$$Mg(ClO_3)_2(s) \rightarrow MgCl_2(s) + O_2(g)$$

What is the coefficient of O_2 when the equation is balanced correctly using the *smallest* whole number coefficients?

A)	1	C) 3
B)	2	D) 4

(4) Which equation is correctly balanced?

A) $H_2 + O_2 \rightarrow H_2O$

- B) $Ca + Cl_2 \rightarrow CaCl$
- C) $2 H_2 + O_2 \rightarrow 2 H_2O$
- D) $Ca + Cl_2 \rightarrow Ca_2Cl$

_(5) Given the unbalanced equation:

 $_Al(s) + _O_2(g) \rightarrow _Al_2O_3(s)$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of $O_2(g)$?

A)	6	C) 3
B)	2	D) 4

(6) Given the unbalanced equation:

 $_Na + _H_2O \rightarrow _H_2 + _NaOH$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for H₂O is

A)	1	C) 3
B)	2	D) 4

___(7) Given the unbalanced equation:

$$CaSO_4 + AlCl_3 \rightarrow Al_2(SO_4)_3 + CaCl_2$$

What is the coefficient of $Al_2(SO_4)_3$ when the equation is completely balanced using the smallest whole-number coefficients?

(8) When the equation

$$\underline{Cu} + \underline{H_2SO_4} \rightarrow \underline{CuSO_4} + \underline{H_2O} + \underline{SO_2}$$

is correctly balanced, what is the coefficient of CuSO₄?

A)	1	C)	3
B)	2	D)	4

(9) When the equation

$$_Al_2(SO_4)_3 + _ZnCl_2 \rightarrow _AlCl_3 + _ZnSO_4$$

is correctly balanced using the smallest whole number coefficients, the sum of the coefficients is

A)	9	C)	5
B)	8	D)	4

(10) When the equation

$$SiO_2 + C \rightarrow SiC + CO$$

is correctly balanced using whole-number coefficients, the sum of all the coefficients is

A)	6	C)	8
B)	7	D)	9

(11) Given the unbalanced equation:

$$Ca(OH)_{2} + (NH_{4})_{2}SO_{4} \rightarrow CaSO_{4} + NH_{3} + H_{2}O$$

What is the sum of the coefficients when the equation is completely balanced using the smallest whole number coefficients?

A)	5	C)	9
B)	7	D)	11

(12) When the equation

$$\underline{\text{Ca}(\text{ClO}_3)_2} \rightarrow \underline{\text{Ca}\text{Cl}_2} + \underline{\text{O}_2}$$

is correctly balanced, the coefficient in front of the O_2 will be

A)	1	C)	3
B)	2	D)	4

Balancing Equations
(2)

____(13) Given the incomplete equation:

 $2 \text{ N}_2\text{O}_5(g) \rightarrow$

Which set of products completes and balances the incomplete equation?

A) $2 N_2(g) + 3 H_2(g)$

- B) $2 N_2(g) + 2 O_2(g)$
- C) $4 \text{ NO}_2(g) + \text{O}_2(g)$
- D) $4 \text{ NO}(g) + SO_2(g)$