(1) Which equation shows a conservation of mass?
A) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
B) $\mathrm{Al}+\mathrm{Br}_{2} \rightarrow \mathrm{AlBr}_{3}$
C) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$
D) $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(2) Given the balanced equation with an unknown compound represented by X :

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \xrightarrow{\text { enzyme }} 2 X+2 \mathrm{CO}_{2}(\mathrm{~g})
$$

Which compound is represented by X ?
A) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$
B) $\mathrm{CH}_{2}(\mathrm{OH})_{4}(\mathrm{aq})$
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq})$
D) $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}(\mathrm{aq})$
(3) Given the unbalanced equation:

$$
\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4
(4) Which equation is correctly balanced?
A) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{Ca}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaCl}$
C) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Ca}+\mathrm{C1}_{2} \rightarrow \mathrm{Ca}_{2} \mathrm{Cl}$
(5) Given the unbalanced equation:

$$
\ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of $\mathrm{O}_{2}(\mathrm{~g})$?
A) 6
B) 2
C) 3
D) 4
(6) Given the unbalanced equation:

$$
\mathrm{Na}+\ldots \mathrm{H}{2} \mathrm{O} \rightarrow _\mathrm{H}_{2}+\ldots \mathrm{NaOH}
$$

When the equation is correctly balanced using the smallest whole-number coefficients, the coefficient for $\mathrm{H}_{2} \mathrm{O}$ is
A) 1
B) 2
C) 3
D) 4
___(7) Given the unbalanced equation:

$$
\ldots \mathrm{CaSO}_{4}+\ldots \mathrm{AlCl}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{CaCl}_{2}
$$

What is the coefficient of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ when the equation is completely balanced using the smallest whole-number coefficients?
A) 1
B) 2
C) 3
D) 4
(8) When the equation

$$
\underset{-}{\mathrm{SO}_{2}}+\underset{\mathrm{Cu}}{ }+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{CuSO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O}+
$$

is correctly balanced, what is the coefficient of CuSO_{4} ?
A) 1
B) 2
C) 3
D) 4
(9) When the equation

$$
\ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{ZnCl}_{2} \rightarrow \ldots \mathrm{AlCl}_{3}+\ldots \mathrm{ZnSO}_{4}
$$

is correctly balanced using the smallest whole number coefficients, the sum of the coefficients is
A) 9
B) 8
C) 5
D) 4
(10) When the equation

$$
\ldots \mathrm{SiO}_{2}+\ldots \mathrm{C} \rightarrow \ldots \mathrm{SiC}+\ldots \mathrm{CO}
$$

is correctly balanced using whole-number coefficients, the sum of all the coefficients is
A) 6
B) 7
C) 8
D) 9
(11) Given the unbalanced equation:

$$
\begin{aligned}
& \ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow \\
& \ldots \mathrm{CaSO}_{4}+\ldots \mathrm{NH}_{3}+\ldots \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

What is the sum of the coefficients when the equation is completely balanced using the smallest whole number coefficients?
A) 5
B) 7
C) 9
D) 11
(12) When the equation

$$
-\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow \ldots \mathrm{CaCl}_{2}+\ldots \mathrm{O}_{2}
$$

is correctly balanced, the coefficient in front of the O_{2} will be
A) 1
B) 2
C) 3
D) 4

Balancing Equations

(13) Given the incomplete equation:
(2)
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow$
Which set of products completes and balances the incomplete equation?
A) $2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
C) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D) $4 \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{2}(\mathrm{~g})$

