General Chemistry
 Mr. MacGillivray
 Test:
 States of Matter

I. Label each of the 5 phase changes in the diagram below with the letter of the correct response. Not all of the letters get used.

S

a) Vaporization
b) Sublimation
c) Melting
d) Freezing
e) Deposition
f) Condensation
II. Label each of the blanks below as either "energy required" or "energy released".

A= ENERGY REQUIRED

$$
\mathrm{B}=\mathrm{ENERGY} \text { RELEASED }
$$

III. The diagram below shows three different flasks. The substance in the flasks is $\mathrm{H}_{2} \mathrm{O}$. Match each description with the letter of the appropriate flask in the diagram.

A

B

10) Which of the flasks shows a liquid that has reached equilibrium with its vapor?
11) Which of the flasks depicts a liquid that will eventually reach equilibrium with its vapor?
12) Which of the pictures shows a flask in which the liquid WILL NOT reach equilibrium with its vapor?
IV. The atmospheric pressure in Denver, Colorado on a particular day is 658 mm Hg . The table below lists the vapor pressure of water at various temperatures. Use this table to determine the approximate temperature at which water will boil in Denver, CO on this day.

Vapor Pressure of Water (mm Hg)											
T(${ }^{\circ} \mathrm{C}$)	P										
-10	2.1	11	9.8	32	35.7	53	107.2	74	277.2	95	633.9
-9	2.3	12	10.5	33	37.7	54	112.5	75	289.1	96	657.6
-8	2.5	13	11.2	34	39.9	55	118.0	76	301.4	97	682.1
-7	2.7	14	12.0	35	42.2	56	123.8	77	314.1	98	707.3
-6	2.9	15	12.8	36	44.6	57	129.8	78	327.3	99	733.2
-5	3.2	16	13.6	37	47.1	58	136.1	79	341.0	100	760.0
-4	3.4	17	14.5	38	49.7	59	142.6	80	355.1		
-3	3.7	18	15.5	39	52.4	60	149.4	81	369.7	102	815.9
-2	4.0	19	16.5	40	55.3	61	156.4	82	384.9		
-1	4.3	20	17.5	41	58.3	62	163.8	83	400.6	104	875.1
0	4.6	21	18.7	42	61.5	63	171.4	84	416.8		
1	4.9	22	19.8	43	64.8	64	179.3	85	433.6	106	937.9
2	5.3	23	21.1	44	68.3	65	187.5	86	450.9		
3	5.7	24	22.4	45	71.9	66	196.1	87	468.7	108	1004
4	6.1	25	23.8	46	75.7	67	205.0	88	487.1		
5	6.5	26	25.2	47	79.6	68	214.2	89	506.1	110	1075
6	7.0	27	26.7	48	83.7	69	223.7	90	525.8		
7	7.5	28	28.3	49	88.0	70	233.7	91	546.1	112	1149
8	8.0	29	30.0	50	92.5	71	243.9	92	567.0		
9	8.6	30	31.8	51	97.2	72	254.6	93	588.6	114	1227
10	9.2	31	33.7	52	102.1	73	265.7	94	610.9		

13)

a) $100^{\circ} \mathrm{C}$
b) $105^{\circ} \mathrm{C}$
c) $96^{\circ} \mathrm{C}$
d) $106^{\circ} \mathrm{C}$
e) $0^{\circ} \mathrm{C}$
14. Order the intermolecular forces (dipole-dipole, London dispersion, and hydrogen bonding) from weakest to strongest.
[A] dipole-dipole, London dispersion, hydrogen bonding
[B] London dispersion, dipole-dipole, hydrogen bonding
[C] hydrogen bonding, dipole-dipole, London dispersion
[D] London dispersion, hydrogen bonding, dipole-dipole
15. The intermolecular forces called hydrogen bonding will not exist between molecules of
[A] NH3
[B] H_{2}
[C] HF
[D] $\mathrm{H}_{2} \mathrm{O}$
[E] any of these
16. At 1 atm of pressure and a temperature of $0^{\circ} \mathrm{C}$, which phase(s) of $\mathrm{H}_{2} \mathrm{O}$ can exist?
[A] ice and water vapor
[B] water only
[C] ice only
[D] ice and water [E] water vapor only
17. The normal freezing point of water is
[A] $0^{\circ} \mathrm{F}$
[B] $32^{\circ} \mathrm{C}$
[C] 273 K
[D] $373^{\circ} \mathrm{C}$
[E] none of these
18. The normal boiling point of water is
[A] 373 K
[B] $0^{\circ} \mathrm{F}$
[C] $32^{\circ} \mathrm{F}$
[D] 273 K
[E] none of these
19. Calculate the quantity of energy required to change 3.00 mol of liquid water to steam at $100^{\circ} \mathrm{C}$. The molar heat of vaporization of water is $40.6 \mathrm{~kJ} / \mathrm{mol}$.
[A] 300 kJ
[B] 13.5 kJ
[C] 122 kJ
[D] 40.6 kJ
[E] none of these
20. Calculate the quantity of energy required to change 26.5 g of liquid water to steam at $100^{\circ} \mathrm{C}$. The molar heat of vaporization of water is $40.6 \mathrm{~kJ} / \mathrm{mol}$.
[A] $1.08 \times 10^{3} \mathrm{~kJ}$
[B] 59.8 kJ
[C] 1.53 kJ
[D] 27.6 kJ
[E] none of these
21. The specific heat capacity of liquid water is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Calculate the quantity of energy required to heat 10.0 g of water from $26.5^{\circ} \mathrm{C}$ to $83.7^{\circ} \mathrm{C}$.
[A] 572 J
[B] 837 J
[C] 239 J
[D] $2.39 \times 10^{3} \mathrm{~J}$
[E] none of these
22. The molar heat of fusion of water is $6.02 \mathrm{~kJ} / \mathrm{mol}$. Calculate the energy required to melt 46.8 g of water.
[A] 6.02 kJ
[B] 7.77 kJ
[C] 282 kJ
[D] 2.32 kJ
[E] none of these
23. The freezing point of helium is approximately $-270^{\circ} \mathrm{C}$. The freezing point of xenon is $-112^{\circ} \mathrm{C}$. Both of these are in the noble gas family. Which of the following statements is supported by these data?
[A] The London forces between the helium molecules are greater than the London forces between the xenon molecules.
[B] The London forces between the helium molecules are less than the London forces between the xenon molecules.
[C] As the molar mass of the noble gas increases, the freezing point decreases.
[D] Helium and xenon form highly polar molecules.
[E] none of these
24. Choose the state of water in which the water molecules are farthest apart on average.
[A] ice (solid)
[B] steam (vapor)
[C] all the same
[D] liquid
25. The process of evaporation happens when which of the following occurs?
[A] A solid becomes a gas.
[B] A liquid becomes a solid.
[C] A solid becomes a liquid.
[D] A gas becomes a liquid.
[E] A liquid becomes a gas.
26. Which of the following processes must exist in equilibrium with the evaporation process when a measurement of vapor pressure is made?
[A] fusion
[B] condensation
[C] vaporization
[D] boiling
[E] sublimation
27. The vapor pressure for water at $100.0^{\circ} \mathrm{C}$ is
[A] 760 torr
[B] More information is needed.
[C] 85 torr
[D] 1 torr
[E] 175 torr
28. As the temperature of a liquid increases, the vapor pressure of the liquid generally
[A] decreases
[B] stays the same
[C] increases
[D] depends on the type of intermolecular forces
29. The boiling temperature of water is always $100^{\circ} \mathrm{C}$. $[A]$ True $[B]$ False
30. As the atmospheric pressure around a liquid decreases, the boiling temperature of the liquid
[A] decreases
[B] stays the same
[C] increases
[D] may increase or decrease depending on the liquid
[E] none of these
31. When a substance undergoes a phase change from a solid to a liquid, the temperature of that substance
[A] decreases
[B] stays the same
[C] increases
[D] may increase or decrease depending on the liquid [E] none of these
32. When a substance undergoes a phase change from a gas to a liquid, the temperature of that substance
[A] decreases
[B] stays the same
[C] increases
[D] may increase or decrease depending on the liquid [E] none of these
33. The heating/cooling curve of chloroform is shown below. What is the heat of fusion of chloroform?
[A] $-63.6^{\circ} \mathrm{C}$
[B] $61.7^{\circ} \mathrm{C}$
[C] $8.80 \mathrm{~kJ} / \mathrm{mol}$
[D] $31.4 \mathrm{~kJ} / \mathrm{mol}$
[E] none of these

